> [!theorem]
>
> Let $\alpha, \beta, \gamma \in \nat_0^n$ be [[Multi-Index|multi-indices]] such that $\alpha = \beta + \gamma$, then
> $
> \frac{\alpha!}{\beta!\gamma!} = \prod_{k \in [n]}\frac{\alpha_k!}{\beta_k!\gamma_k!} = \prod_{k \in [n]}{\alpha_k \choose \beta_k}
> $
> *Proof*.
> $
> \begin{align*}
> \frac{\alpha!}{\beta!\gamma!} &= \frac{\prod_{k \in [n]}\alpha_k!}{\prod_{k \in [n]}\beta_k! \cdot \prod_{k \in [n]}\gamma_k!} \\
> &= \prod_{k \in [n]}\frac{\alpha_k!}{\beta_k!\gamma_k!} \\
> &= \prod_{k \in [n]}\frac{\alpha_k!}{\beta_k!(\alpha_k - \beta_k)!} \\
> &= \prod_{k \in [n]}{\alpha_k \choose \beta_k}
> \end{align*}
> $
> [!theorem] Lemma A
>
> Let $e_j$ be the vector with $1$ on its $j$-th entry and $0$ everywhere else, $\gamma \le \alpha$ be multi-indices, then
> $
> \begin{align*}
> {\alpha + e_j \choose \gamma } &= {\alpha \choose \gamma - e_j} + {\alpha \choose \gamma}
> \\
> \frac{(\alpha + e_j)!}{\gamma!(\alpha + e_j - \gamma)!} &= \frac{\alpha!}{(\gamma - e_j)!(\alpha - \gamma + e_j)!} + \frac{\alpha!}{\gamma!(\alpha - \gamma)!}
> \end{align*}
> $
> *Proof*. Expand each of the products as
> $
> \begin{align*}
> \frac{\alpha!}{(\gamma - e_j)!(\alpha - \gamma + e_j)!} &= {a_j \choose \gamma_j - 1} \cdot \prod_{k \ne j}{\alpha_k \choose \gamma_k} \\
> \frac{\alpha!}{\gamma!(\alpha - \gamma)!} &= {\alpha_j \choose \gamma_j} \cdot \prod_{k \ne j}{\alpha_k \choose \gamma_k}
> \end{align*}
> $
> Adding the first binomial coefficient leads to
> $
> {\alpha_j \choose \gamma_{j} - 1} + {\alpha_j \choose \gamma_j} = {\alpha_j + 1 \choose \gamma_j}
> $
> Adding the terms together yields
> $
> \begin{align*}
> &{a_j \choose \gamma_j - 1} \cdot \prod_{k \ne j}{\alpha_k \choose \gamma_k} + {\alpha_j \choose \gamma_j} \cdot \prod_{k \ne j}{\alpha_k \choose \gamma_k} \\
> &= {\alpha_j + 1 \choose \gamma_j} \cdot \prod_{k \ne j}{\alpha_k \choose \gamma_k} \\
> &= \frac{(\alpha + e_j)!}{\gamma!(\alpha + e_j - \gamma)!}
> \end{align*}
> $
> [!theorem]
>
> Let $\gamma, \alpha$ be multi-indices such that $\gamma \le \alpha$ and $\gamma < e_j$ ($\gamma_j = 0$), then
> $
> \begin{align*}
> {\alpha \choose \gamma} &= {\alpha + e_j \choose \gamma}
> \\
> \frac{\alpha!}{\gamma!(\alpha - \gamma)!} &= \frac{(\alpha + e_j)!}{\gamma!(\alpha + e_j - \gamma)!}
> \end{align*}
> $
> *Proof*.
> $
> \begin{align*}
> \frac{\alpha!}{\gamma!(\alpha - \gamma)!} &= \prod_{k \in [n]}{\alpha_k\choose \gamma_k} \\
> &= {\alpha_j\choose \gamma_j}\prod_{k \ne j}{\alpha_k\choose \gamma_k}\\
> &= {\alpha_j\choose 0}\prod_{k \ne j}{\alpha_k\choose \gamma_k}\\
> &= {\alpha_j + 1\choose 0}\prod_{k \ne j}{\alpha_k\choose \gamma_k} \\
> &= \frac{(\alpha + e_j)!}{\gamma!(\alpha + e_j - \gamma)!}
> \end{align*}
> $
> [!theorem]
>
> Let $f, g \in C^{\text{enough}}$, then
> $
> \begin{align*}
> &\sum_{\gamma \le \alpha}{\alpha \choose \gamma} \cdot \frac{\partial }{\partial x_j}(\partial^\gamma f)(\partial^{\alpha - \gamma} g) \\
> &= \sum_{\gamma \le \alpha}{\alpha \choose \gamma }(\partial^{\gamma + e_j} f)(\partial^{\alpha - \gamma} g) + \sum_{\gamma \le \alpha}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma}) \\
> &= \sum_{\gamma \le \alpha + e_j}{\alpha + e_j \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})
> \end{align*}
> $
> *Proof*. First consider the left term. Shift it by $e_j$, then split it into two parts: $\gamma \le \alpha + e_j$, $\gamma = \alpha + e_j$.
> $
> \begin{align*}
> &\sum_{\gamma \le \alpha}{\alpha \choose \gamma }(\partial^{\gamma + e_j} f)(\partial^{\alpha - \gamma} g) \\
> &= \sum_{e_j \le \gamma \le \alpha + e_j}{\alpha \choose \gamma - e_j }(\partial^{\gamma} f)(\partial^{\alpha + e_j - \gamma} g) \\
> &= \pb{\sum_{e_j \le \gamma \le \alpha}{\alpha \choose \gamma - e_j }(\partial^{\gamma} f)(\partial^{\alpha + e_j - \gamma} g)} + \po{\underbrace{{\alpha \choose \alpha} (\partial^{\alpha + e_j} f)(\partial^{0} g)}_{\gamma = \alpha + e_j}}
> \end{align*}
> $
> Similarly, split the right term into two parts: $\gamma < e_j$ and $\gamma \ge e_j$:
> $
> \begin{align*}
> &\sum_{\gamma \le \alpha}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma}) \\
> &= \pg{\underbrace{\sum_{\gamma \le \alpha, \gamma < e_j}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})}_{\gamma_j = 0}} + \pb{\sum_{e_j \le \gamma \le \alpha}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})}
> \end{align*}
> $
> The blue parts can be combined with Lemma A to produce
> $
> \begin{align*}
> &\pb{\sum_{e_j \le \gamma \le \alpha}{\alpha \choose \gamma - e_j }(\partial^{\gamma} f)(\partial^{\alpha + e_j - \gamma} g)} + \pb{\sum_{e_j \le \gamma \le \alpha}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})} \\
> &= \pb{\sum_{e_j \le \gamma \le \alpha}{\alpha + e_j \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})}
> \end{align*}
> $
> Since ${\alpha \choose \alpha} = 1 = {\alpha + e_j \choose \alpha + e_j}$, the orange part can simply be rewritten as
> $
> \po{\underbrace{{\alpha \choose \alpha} (\partial^{\alpha + e_j} f)(\partial^{0} g)}_{\gamma = \alpha + e_j}} = \po{\underbrace{{\alpha + e_j \choose \alpha + e_j} (\partial^{\alpha + e_j} f)(\partial^{0} g)}_{\gamma = \alpha + e_j}}
> $
> The green part can be rewritten with Lemma B to produce
> $
> \pg{\underbrace{\sum_{\gamma \le \alpha, \gamma < e_j}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})}_{\gamma_j = 0}} = \pg{\sum_{\gamma \le \alpha, \gamma < e_j}{\alpha + e_j \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})}
> $
> Adding all of the terms yields
> $
> \begin{align*}
> &\sum_{\gamma \le \alpha}{\alpha \choose \gamma }(\partial^{\gamma + e_j} f)(\partial^{\alpha - \gamma} g) + \sum_{\gamma \le \alpha}{\alpha \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma}) \\
> &= \pg{\sum_{\gamma \le \alpha, \gamma < e_j}{\alpha + e_j \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})} \\
> &+ \pb{\sum_{e_j \le \gamma \le \alpha}{\alpha + e_j \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})} \\
> &+ \po{\underbrace{{\alpha + e_j \choose \alpha + e_j} (\partial^{\alpha + e_j} f)(\partial^{0} g)}_{\gamma = \alpha + e_j}} \\
> &= \sum_{\gamma \le \alpha + e_j}{\alpha + e_j \choose \gamma}(\partial^{\gamma}f)(\partial^{\alpha + e_j - \gamma})
> \end{align*}
> $