> [!theorem]
>
> $
> \real^{n + 1} \setminus \bracs{0} \iso \mathbb{S}^n \times \real^+
> $
> *Proof*. Identify $\mathbb{S}^n$ with unit vectors on $\real^{n + 1}$,
> $
> \pi: \mathbb{S}^n \times \real^+ \to \real \setminus \bracs{0} \quad (\hat x, r) \mapsto r\hat x
> $
> which is continuous and has an inverse
> $
> x \mapsto \paren{\frac{x}{\norm{x}}, \norm{x}}
> $
> that is continuous on each coordinate.