> [!theorem]
>
> Let $\cx$ be a [[Normed Vector Space|normed space]] and $E \subset X$ be any set, then
> $
> \lambda \ol{E} + x = \ol{\lambda E + x} \quad \lambda E^o + x = \paren{\lambda E + x}^o
> $
> for any $\lambda \ne 0$ and $x \in \cx$.
>
> *Proof*. First consider dilation. Let $\lambda \ne 0$, $\varepsilon > 0$, and $x \in \ol{E}$ be an [[Topological Closure|adherent point]] of $E$. Then there exists $y \in E$ such that $\norm{x - y} < \varepsilon/\abs{\lambda}$, as $\lambda y \in \lambda E$
> $
> \norm{\lambda x - \lambda y} = \abs{\lambda}\norm{x - y} < \varepsilon
> $
> Therefore $\lambda x \in \ol{\lambda E}$ and $\lambda \ol{E} \subset \ol{\lambda E}$. Applying the same argument on $\ol{\lambda E}$ itself,
> $
> \begin{align*}
> \lambda ^{-1}\ol{\lambda E} &\subset \ol{\lambda^{-1}\lambda E} \\
> \lambda ^{-1}\ol{\lambda E} &\subset \ol{E} \\
> \ol{\lambda E} &\subset \lambda \ol{E}
> \end{align*}
> $
>
>
> Let $x \in E^o$, then there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset E$. Since
> $
> B(\lambda x, \lambda \varepsilon)= \lambda B(x, \varepsilon) \subset \lambda E
> $
> we have $\lambda x \in (\lambda E)^o$ and $\lambda E^o \subset (\lambda E)^o$. Applying the argument on $(\lambda E)^o$ yields
> $
> \begin{align*}
> \lambda^{-1}(\lambda E)^o &\subset (\lambda^{-1}\lambda E)^o \\
> \lambda^{-1}(\lambda E)^o &\subset E^o \\
> (\lambda E)^o &\subset \lambda E^o
> \end{align*}
> $
>
> Now consider addition. Let $x \in \cx$, $\varepsilon > 0$, and $y \in \ol{E}$, then there exists $z \in E$ such that $\norm{y - z} < \varepsilon$, and $\norm{(y + x) - (z + x)} < \varepsilon$. Therefore $x + y \in \ol{E + x}$ and $\ol{E} + x \subset \ol{E + x}$. Applying the idea again yields
> $
> \begin{align*}
> \ol{E + x} - x &\subset \ol{E + x - x} \\
> \ol{E + x} - x &\subset \ol{E} \\
> \ol{E + x} &\subset \ol{E} + x
> \end{align*}
> $
> Let $y \in E^o$, then there exists $B(y, \varepsilon) \subset E^o$ and $B(y + x, \varepsilon) \subset E + x$. Therefore $E^o + x \subset (E + x)^o$, and
> $
> \begin{align*}
> (E + x)^o - x &\subset (E + x - x)^o \\
> (E + x)^o - x&\subset E^o \\
> (E + x)^o &\subset E^o + x
> \end{align*}
> $