> [!theorem]
>
> The [[Schwartz Space|Schwartz space]] $\cs$ is a [[Fréchet Space|Fréchet space]] with its [[Topological Space|topology]] determined by the seminorms $\norm{\cdot}_{(N, \alpha)}$.
>
> *Proof*.
>
> # Hausdorff
>
> Since $\norm{\cdot}_{(0, 0)} = \norm{\cdot}_u$, for any $f \ne g$, $\norm{f - g}_u > 0$ and there exists open sets separating them.
>
> # Completeness
>
> ### Uniform Convergence of Partials
>
> Let $\seq{f_k} \subset \cs$ be a [[Cauchy Sequence|Cauchy sequence]] and $\alpha$ be a multi-index, then $\seq{\partial^\alpha f_k}$ converges [[Uniform Convergence|uniformly]] to a continuous function.
>
> *Proof*. Since $\seq{f_k}$ is Cauchy, $\norm{f_j - f_k}_{(N, \alpha)} \to 0$ for any $N \in \nat_0$ and $\alpha$. Fix $N = 0$, then
> $
> \norm{f_j - f_k}_{(0, \alpha)} = \norm{\partial^\alpha f_j -\partial^\alpha f_k}_u \to 0
> $
> the sequence $\seq{\partial^\alpha f_n}$ is Cauchy with respect to the uniform norm. As $BC(\real^n)$ with uniform norm is complete, the sequence is convergent.
>
> ### Existence of Limit
>
> Denote $g_\alpha = \limv{n}\partial^\alpha$. Let $\seq{f_n} \subset \cs$ be a Cauchy sequence, then there exists $g = g_0 \in C^\infty$ such that
> $
> \partial^\alpha g = \limv{n}\partial^\alpha f_n = g_\alpha \quad \forall \alpha
> $
> where the sequence converges uniformly.
>
> ##### Induction Argument
>
> Let $k \in \nat$ and $\seq{f_n} \subset \cs$ be a Cauchy sequence such that
> $
> \partial^\alpha g_0 = \partial^\alpha \lim_{n \to \infty}f_n = \limv{n}\partial^{\alpha}f_n = g_{\alpha} \quad \forall \alpha: \abs{\alpha} = k
> $
> then
> $
> \partial^\beta g_0 = g_{\beta} \quad \forall \beta: \abs{\beta} = k + 1
> $
> Since $\partial^0g_0 = g_0$, this applies to all multi-indices.
>
> *Proof*. Suppose that $g_0 \in C^{k}$ and that $\partial^\alpha g_0 = g_\alpha$ for all $\alpha: \abs{\alpha} = k$. Let $\beta$ be a multi-index with $\abs{\beta} = k + 1$, then there exists $\alpha: \abs{\alpha} = k$ and $j$ such that $\beta = \alpha + e_j$.
>
> Since $f_n \in C^\infty$, by the [[Mean Value Theorem|mean value theorem]],
> $
> (\partial^\alpha f_n)(x + te_j) - (\partial^\alpha f_n)(x) = t\int_0^1(\partial^{\alpha + e_j}f_n)(x + ste_j)ds
> $
> Taking the limit as $n \to \infty$ yields
> $
> (g_\alpha)(x + te_j) - (g_\alpha)(x) = \limv{n}t\int_0^1(\partial^{\alpha + e_j}f_n)(x + ste_j)ds
> $
> where the right-hand-side is dominated by $\sup_{n \in \nat}\norm{\partial^{\alpha + e_j}f_n}_u$, which thanks to being restricted to the interval $[0, 1]$, is in $L^1$. By the [[Dominated Convergence Theorem]],
> $
> \limv{n}t\int_0^1(\partial^{\alpha + e_j}f_n)(x + ste_j)ds = t\int_0^1g_{\alpha + e_j}(x + ste_j)ds
> $
> Push the $t$ in to obtain
> $
> t\int_0^1(g_{\alpha + e_j})(x + ste_j)ds = \int_0^t g_{\alpha + e_j}(x + se_j)ds
> $
> Since $s \mapsto g_{\alpha + e_j}(x + se_j)$ is continuous on $[-1, 1]$, and $0 \in [-1, 1]^o$, by FTC,
> $
> \partial^{e_j}g_\alpha(x) = g_{\alpha + e_j}(x)
> $
> we have $g_0 \in C^{k + 1}(\real^n, \complex)$.
>
> ### Convergence in Seminorms
>
> Let $\seq{f_k} \subset \cs$ be a Cauchy sequence and $g_0 = \limv{k}f_k$, then $\norm{f_k - g_0}_{(N, \alpha)} \to 0$ for all $N, \alpha$.
>
> *Proof*. Let $N$ be a non-negative integer and $\alpha$ be a multi-index. Since $\seq{f_k} \subset \cs$ is Cauchy, for any $\varepsilon > 0$, there exists $K \in \nat$ such that
> $
> (1 + \abs{x})^N\abs{\partial^\alpha f_j(x) - \partial^\alpha f_k(x)} < \varepsilon \quad \forall j, k \ge K, x \in \real^n
> $
> Since $\partial^\alpha f_k \to \partial^\alpha g_0$ uniformly as $k \to \infty$,
> $
> (1 + \abs{x})^N\abs{\partial^\alpha f_j(x) - \partial^\alpha g_0(x)} \le \varepsilon \quad \forall j \ge K, x \in \real^n
> $
> by sending $k \to \infty$. This places a bound on the supremum as
> $
> \sup_{x \in \real^n}(1 + \abs{x})^N \abs{\partial^\alpha f_j(x) - \partial^\alpha g_0(x)} \le \varepsilon \quad \forall j \ge K
> $
> which means that $\norm{f_k - g_0}_{(N, \alpha)} \to 0$.
>
> ### Membership in S
>
> Let $\seq{f_k} \subset \cs$ be a Cauchy sequence and $g_0 = \limv{k}f_k$, then $g_0 \in \cs$.
>
> *Proof*. Fix $(N, \alpha)$. Since $\seq{f_k}$ is Cauchy, there exists $K \in \nat$ such that
> $
> \norm{f_K - f_k}_{(N, \alpha)} < 1 \quad \forall k \ge K
> $
> and
> $
> M = \sup_{k \in \nat}\norm{f_k}_{(N, \alpha)} \le \max_{k \le K}\norm{f_k}_{(N, \alpha)} + 1 < \infty
> $
> which gives
> $
> (1 + \abs{x})^N \cdot \abs{\partial^\alpha f_k(x)} \le M \quad \forall x \in \real^n
> $
> As $\partial^\alpha f_k \to \partial^\alpha g_0$ uniformly,
> $
> (1 + \abs{x})^N \cdot \abs{\partial^\alpha g_0(x)} \le M \quad \forall x \in \real^n
> $
> Therefore $\norm{g_0}_{(N, \alpha)} < \infty$ and $g_0 \in \cs$.