> [!definition]
>
> Let $\alg$ be a [[Banach Algebra|Banach algebra]] and $x \in \alg$. The **resolvent** (set) of $x$ is the complement of its [[Spectrum|spectrum]]. If $\lambda \not\in \spec{x}$, then the **resolvent** (operator) of $x$ is the operator
> $
> R(\lambda) = R_x(\lambda) = (\lambda e - x)^{-1}
> $
> which is analytic on the resolvents[^1].
[^1]: See [[Power Series|power series]].