> [!definition]
>
> Let $E_1, E_2, \cdots$ be an [[Limit|infinite]] [[Sequence|sequence]] of [[Set|sets]] indexed by the [[Natural Numbers|natural numbers]]. Define the following sets:
> $
> \underline{E} = \bigcup_{n = 1}^{\infty} \bigcap_{m = n}^{\infty} E_m \quad
> \bar{E} = \bigcap_{n = 1}^{\infty} \bigcup_{m = n}^{\infty} E_m
> $
>
> The limit $\limv{n}E_n$ exists if and only if $\underline{E} = \bar{E}$.
$
\bigcap_{n = 1}^{\infty}E_n \subseteq \underline{E} \subseteq \bar{E} \subseteq \bigcup_{n = 1}^{\infty}
$