> [!definition]
>
> A [[Sequence|sequence]] $(x_n)$ is a *Cauchy sequence* if $\forall \varepsilon > 0$, $\exists N \in \nat$, where whenever $m, b \ge N$, $|x_{n} - x_m| \lt \varepsilon$.
> [!theorem]
>
> Cauchy sequences are bounded.
>
> *Proof*. Given $\varepsilon = 1$, $\exists N \in \nat:$ $|x_m - x_n| < 1$, $\forall m, n \ge N$. Then, $|x_n| < |x_N| + 1 \forall n \ge N$. Then,
> $
> M = \max\{|x_1|, |x_2|, |x_3| \cdots, |x_{N - 1}|, |x_N| + 1\}
> $
> is a bound for the sequence.
> [!theorem]
>
> Every [[Limit|convergent]] sequence is a Cauchy sequence.
>
> *Proof*. Suppose that $(x_n)$ converges to $x$. Then, $\forall \varepsilon > 0$, $\exists N \in \nat$ where for all $n \ge N$, $|x_n - x| < \frac{\varepsilon}{2}$. Let $m \ge N$, then
> $
> \varepsilon = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} >
> |x_n - x| + |x - x_m| \ge
> |x_n - x + x - x_m| = |x_n - x_m|
> $
> $(x_n)$ is a Cauchy sequence.
>
> Note that this direction is independent from Completeness.
> [!theoremb] Cauchy Criterion
>
> Every Cauchy sequence of [[Real Numbers|real numbers]] is convergent. Otherwise, the Cauchy criterion is used as the definition of convergent sequences.
>
> *Proof*. Let $(x_n)$ be a Cauchy sequence. Use the [[Bolzano-Weierstrass Property|Bolzano-Weierstrass Theorem]] (based on Completeness) to create a convergent subsequence $(x_{n_k}) \to x$. Let $\varepsilon > 0$, then since $(x_n)$ is Cauchy,
> $
> \exists N \in \nat: |x_n - x_m| < \frac{\varepsilon}{2} \quad \forall m, n \ge N
> $
> Since $(x_{n_{k}}) \to x$, choose a term in the subsequence $x_{n_{K}}$ with $n_K \ge N$, where
> $
> |x_{n_{K}} - x| \lt \frac{\varepsilon}{2}
> $
> But then since $n_K \ge N$,
> $
> \begin{align*}
> |x_n - x| &= |x_n - x_{n_{K}} + x_{n_{k}} - x| \\
> &\le |x_n - x_{n_{K}}| + |x_{n_K} - x| \\
> &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
> \end{align*}
> $
> [!theorem]
>
> Let $(x_n)$ and $(y_n)$ be Cauchy sequences in a [[Metric Space|metric space]] $(X, d)$. Then $(d(x_n, y_n))$ is a Cauchy sequence of real numbers.
>
> *Proof*. Since $(x_n)$ and $(y_n)$ are Cauchy sequences,
> $
> \forall \varepsilon > 0, \exists N_x \in \nat: \forall m, n \ge N_x, d(x_m, x_n) < \varepsilon/2
> $
> and
> $
> \forall \varepsilon > 0, \exists N_y \in \nat: \forall m, n \ge N_y, d(x_m, x_n) < \varepsilon/2
> $
> Fix $\varepsilon > 0$ and take $N = \max (N_x, N_y)$, and have $m, n \ge N$. Using the triangle inequality we have
> $
> d(x_n, y_n) \le d(x_m, y_m) + d(x_m, x_n) + d(y_m, y_n)
> $
> and
> $
> d(x_m, y_m) \le d(x_n, y_n) + d(x_m, x_n) + d(y_m, y_n)
> $
> which means
> $
> |d(x_n, y_n) - d(x_m, y_m)| < d(x_m, x_n) + d(y_m, y_n)
> < 2\varepsilon/2 = \varepsilon
> $
> and therefore $(d(x_n, y_n))$ is also Cauchy.