> [!theorem]
>
> Let $f$, $g$ be [[Continuity|continuous]] [[Function|functions]] defined on an interval containing $a$. If $f$ and $g$ are [[Derivative|differentiable]] on this interval, and that $f(a) = g(a) = 0$, then
> $
> \lim_{x \to a}\frac{f^\prime(x)}{g^\prime(x)} = L \Rightarrow
> \lim_{x \to a}\frac{f(x)}{g(x)} = L
> $
>
> *Proof*.
> $
> \begin{align*}
> \lim_{x \to a}\frac{f^\prime(x)}{g^\prime(x)} &=
> \frac{f^\prime(x)}{g^\prime(x)} \\
> &=
> \frac{
> \lim_{x \to a}\frac{f(x) - f(a)}{x - a}
> }{
> \lim_{x \to a}\frac{g(x) - g(a)}{x - a}
> } \\
> &=
> \lim_{x \to a}\frac{f(x) - f(a)}{g(x) - g(a)} =
> \lim_{x \to a}\frac{f(x)}{g(x)}
> \end{align*}
> $
> [!summary] Other Indeterminate Forms
>
> Many other indeterminate forms can be transformed into a $\frac{0}{0}$ form or an $\frac{\infty}{\infty}$ form, and then evaluated using L'Hôpital's Rule.
>
>
> #### Indeterminate Products
>
> For any product $f \cdot g$ that results in the indeterminate form $0 \cdot \pm\infty$, the limit can be transformed to $\frac{f}{1/g}$, converting it to a $\frac{0}{0}$ form.
>
>
> #### Indeterminate Differences
>
> For any difference $f - g$ that results in some form of $\infty - \infty$, it can be converted into an indeterminate quotient by multiplying it by a fraction of its conjugate:
> $
> \lim(f - g) = \lim\frac{f^2 - g^2}{f + g}
> $
>
>
> #### Indeterminate Powers
>
> There can be three types of indeterminate powers that can arise from $f^g$: $0^0$, $\infty^0$, and $1^\infty$. All three can be rewritten to be an [[Exponential Function|exponential function]]: $e^{g\ln{f}}$. The resulting indeterminate product in the exponent can then be converted into a quotient.