> [!theorem]
>
> Let $(X, \cm)$ be a [[Measure Space|measurable space]]. For any $E \subseteq X$, the **characteristic/indicator function** $\chi_E$ of $E$ is equal to
> $
> \chi_E(x) = \begin{cases}
> 1 &x \in E \\
> 0 &x \not\in E
> \end{cases}
> $
> then $\chi_E$ is $\cm$-[[Measurable Function|measurable]] if and only if $E \in \cm$.
>
> *Proof*. Let $A \in \cb_\real$ such that $1 \in A, 0 \not\in A$, then $\chi_E^{-1}(A) = E \in \cm$. If $1 \not\in A$ but $0 \in A$, then $\chi_E^{-1}(A) = E^c \in \cm$. If $0, 1 \in A$, then $\chi_E^{-1}(A) = X \in \cm$. So $\chi_E$ is measurable only when $E \in \cm$.