> [!definition]
>
> Let $(X, \cm, \mu)$ be a [[Measure Space|measure space]], then $L^+$ is the space of $\cm$-[[Measurable Function|measurable functions]] from $X$ to $[0, \infty]$.
> [!definition]
>
> Let $\phi \in L^+$ be a [[Simple Function|simple function]] with standard representation $\phi = \sum_{i = 1}^{n}a_i\chi_{E_i}$, then the **integral** of $\phi$ with respect to $\mu$ is
> $
> \int\phi(x)d\mu(x) = \int \phi d\mu = \sum_{i = 1}^{n}a_j \mu(E_j)
> $
> with $0 \cdot \infty = 0$. Let $A \in \cm$, then $\phi \cdot \chi_A$ is also simple, and the *definite* integral is
> $
> \int_A \phi(x) d\mu(x) = \int_A \phi d\mu = \int \phi \cdot \chi_A d\mu
> $
> [!definition]
>
> Let $f \in L^+$ be any measurable function, then the [[Upper and Lower Approximations|lower approximation]] of $f$ using simple functions
> $
> \mu(f) = \int f d\mu = \sup\bracs{\int \phi d\mu: 0 \le \phi \le f, \phi \text{ simple}}
> $
> is the **integral** of $f$.
> [!theorem] Strict Reduction
>
> Let $f \in L^+$ be any measurable function, then we can approximate $f$ strictly with
> $
> \ul\Sigma_{x} = \bracs{\phi \text{ simple}: 0 \le \phi \le f, \phi(x) = f(x) \Leftrightarrow f(x) = 0}
> $
> then $\int f = \sup_{\phi \in \ul\Sigma_x}\int \phi$.
>
> *Proof*. Since $\ul\Sigma_x$ is a subset of the collections used to approximate $f$ from below, $\int f \ge \sup_{\phi \in \ul\Sigma_x}\int \phi$.
>
> Let $0 \le \phi \le f$, then for any $\alpha < 1$, $\phi(x) > 0 \Rightarrow \alpha \phi(x) < \phi(x)$. If $f(x) > 0$, then either $\phi(x) > 0$ or $\phi(x) = 0$. In both cases, $\alpha \phi (x) < f(x)$. If $\phi(x) < f(x)$, then $f(x) > 0$. Therefore $\alpha \phi \in \ul\Sigma_x$.
>
> We now have
> $
> \sup_{\alpha < 1}\int \alpha\phi = \sup_{\alpha < 1}\alpha \int \phi = \int \phi
> $
> and therefore $\sup_{\phi \in \ul\Sigma_x}\int \phi \ge \int f$.
> [!theorem]
>
> Let $f \in L^+$, then $\int f = 0 \Leftrightarrow f = 0$ [[Almost Everywhere|a.e.]]
>
> *Proof*. Let $f \in L^+$ such that $f = 0$ a.e. Let $N \in \cm: \mu(N) = 0$ be a null set where $N \supseteq \bracs{x \in X: f(x) \ne 0}$. Let $\phi \le f$ be a simple function, then
> $
> \phi = 0 \cdot \chi_{X \setminus \cn} + \sum_{j = 1}^{n}a_j \chi_{E_j} \quad E_j \subseteq N
> $
> since $\phi(x) > 0 \Rightarrow x \in N$. So
> $
> \int \phi = 0 + \sum_{j = 1}^{n}a_j\mu(E_j) = 0
> $
> and $\int f = 0$.
>
> Now suppose that $\int f = 0$, then $\int \phi = 0 \forall \phi \le f$. Let $E_j = \bracs{x \in X: f(x) > 1/j}$, then
> $
> \forall a > 0, \exists N \in \nat, 1/N < a: a \in E_N
> $
> and $\bigcup_{j \in \nat}E_j = \bracs{x \in X: f(x) > 0}$. Since $\frac{1}{j}\chi_{E_j} \le f$,
> $
> \int \frac{1}{j}\chi_{E_j} = \frac{1}{j}\mu(E_j) = 0 \Rightarrow \mu(E_j) = 0 \quad \forall j \in \nat
> $
> which gives $\mu\paren{\bigcup_{j \in \nat}E_j} \le \sum_{j \in \nat}\mu(E_j) = 0$ and $f = 0$ a.e.
> [!theorem]
>
> Let $f \in L^+$ such that $\int f < \infty$. Then $\bracs{x: f(x) = \infty}$ is a null set and $\bracs{x: f(x) > 0}$ is $\sigma$-finite.
>
> *Proof*. Let $E = \bracs{x: f(x) = \infty}$, then $\alpha \chi_{E} \le f \forall \alpha \ge 0$. This means that $\mu(E) \le 1/\alpha \forall \alpha \ge 0$ and $\mu(E) = 0$.
>
> Let $F = \bracs{x: f(x) > 0}$ and $F_n = \bracs{x: f(x) > 1/n}$. Then $F = \bigcup_{n \in \nat}F_n$. Suppose that $F = \bracs{x: f(x) > 0}$ is not sigma finite, then there must exist $F_k$ where $F_k$ is not sigma finite. If not, then we can simply partition each $F_k$ as a countable union of finite sets, and combine them to create $F$ as a countable union of finite sets. This gives
> $
> \int \frac{1}{k}\chi_{F_k} = \frac{\infty}{k} \Rightarrow \int f = \infty
> $
> Therefore $F$ cannot be sigma finite.
> [!theorem]
>
> Let $f: X \times [a, b] \to \complex$ ($[a, b]$ is bounded) such that $f(\cdot, t): X \to \complex$ is [[Integrable Function|integrable]], and let $F(t) = \int_X f(x, t)d\mu(x)$.
>
> If there exists $g \in L^1(\mu)$ such that $|f(x, t)| \le g(x)$ for all $x \in X, t \in [a, b]$, and $\lim_{t \to t_0}f(x, t) = f(x, t_0)$ for all $x$, then the [[Limit|limit]] may be interchanged with the integral:
> $
> \lim_{t \to t_0}F(t) = \lim_{t \to t_0}\int_X f(x, t)d\mu(x) = \int_xf(x, t_0)d\mu(x) = F(t_0)
> $
> If $f(x, \cdot)$ is [[Continuity|continuous]] for all $x$, then $F$ is also continuous.
>
> If $\frac{\partial f}{\partial t}$ exists, and there exists $g \in L^1(\mu)$ such that $\abs{\frac{\partial f}{\partial t}(x, t)} \le g(x)$ for all $x, t$, then $F$ is [[Derivative|differentiable]] and the [[Derivative|derivative]] may be interchanged with the integral:
> $
> \frac{dF}{dt} = \frac{d}{dt}\int_X f(x, t)d\mu(x) = \int_X \frac{\partial f}{\partial t}(x, t)d\mu(x)
> $
>
> *Proof*. Let $\seq{t_n} \subset [a, b]$ be any [[Sequence|sequence]] such that $t_n \to t_0$, then since $f(x, t_n)$ is dominated by $g$ for all $t_n$ and $f(x, t_n) \to f(x, t_0)$, by the [[Dominated Convergence Theorem]],
> $
> \limv{n}\int_X f(x,t_n)d\mu(x) = \int\limv{n}f(x, t_n)d\mu(x) = \int f(x,t_0)d\mu(x)
> $
> Since this holds for any $t_n \to t_0$, we have
> $
> \lim_{t \to t_0}\int_X f(x, t)d\mu(x) = \int f(x, t_0)d\mu(x)
> $
> If $f(x, \cdot)$ is continuous for all $x$, then for any $t_0 \in [a, b]$,
> $
> \lim_{t \to t_0}f(x, t) = f(x, t_0)
> $
> which means that
> $
> \lim_{t \to t_0}\int_X f(x, t)d\mu(x) = \int f(x, t_0)d\mu(x) \quad \forall t_0 \in [a, b]
> $
> and $F$ is continuous.
>
> Suppose that $\frac{\partial f}{\partial t}$ exists for all $x, t$, then
> $
> \frac{\partial f}{\partial t}(x, t_0) = \lim_{t \to t_0}\frac{f(x, t_0) - f(x, t)}{t_0 - t}
> $
> meaning that
> $
> \frac{\partial f}{\partial t}(x, t_0) = \limv{n}\frac{f(x, t_0) - f(x, t_n)}{t_0 - t_n}
> $
> for any sequence $\seq{t_n} \subset [a, b]$ where $t_n \to t_0$ ($t_n \ne t_0$). Since each $f(x, t_0)$ is integrable and therefore [[Measurable Function|measurable]], $\frac{\partial f}{\partial t}(x, t_0)$ is a limit of measurable functions, which is also measurable. As $\frac{\partial f}{\partial t}(x, t_0)$ is dominated by $g(x)$, $\frac{\partial f}{\partial t}(x, t)$ is integrable for each $t \in [a, b]$.
>
> Denote
> $
> h_n(x) = \frac{f(x, t_0) - f(x, t_n)}{t_0 - t_n}
> $
> then by the [[Mean Value Theorem|mean value theorem]], for any $x \in X$, there exists $c$ between $t_0$ and $t_n$ such that $h_n(x) = \frac{\partial f}{\partial t}(x, c)$. This means that
> $
> \forall x \in X, \exists c \in [a, b]: \abs{h_n(x)} = \abs{\frac{\partial f}{\partial t}(x, c)} \le \sup_{t \in [a, b]}\abs{\frac{\partial f}{\partial t}(x, t)} \le g(x)
> $
> and $h_n(x)$ is dominated by $g(x)$ as well. By the [[Dominated Convergence Theorem]],
> $
> \begin{align*}
> \frac{dF}{dt}(t_0) &= \limv{n}\frac{F(t_0) - F(t_n)}{t_0 - t_n} \\
> &= \limv{n}\frac{\int_X f(x, t_0)d\mu(x) - \int_X f(x, t_n)d\mu(x)}{t_0 - t_n} \\
> &= \limv{n}\int_X\frac{f(x, t_0) - f(x, t_n)}{t_0 - t_n}d\mu(x) \\
> &= \int_X \limv{n}\frac{f(x, t_0) - f(x, t_n)}{t_0 - t_n}d\mu(x) \\
> &= \int_X \frac{\partial f}{\partial t}(x, t_0)d\mu(x)
> \end{align*}
> $
> Since the above holds for any sequence $t_n \to t_0$,
> $
> \begin{align*}
> \frac{dF}{dt}(t_0) &= \lim_{t \to t_0}\frac{F(t_0) - F(t)}{t_0 - t} \\
> &= \int_X \lim_{t \to t_0}\frac{f(x, t_0) - f(x, t)}{t_0 - t}d\mu(x) \\
> &= \int_X\frac{\partial f}{\partial t}(x, t_0)d\mu(x)
> \end{align*}
> $
> The derivative $\frac{dF}{dt}$ therefore exists at every $t_0 \in [a, b]$, and $\frac{dF}{dt} = \int_X \frac{\partial f}{\partial t}(x, t)d\mu(x)$.