> [!definition]
>
> A [[Function|function]] $f: \real \to \mathbb{C}|\real$ is [[Lebesgue Measure|Lebesgue]] measurable if it is $(\lms, \cb_\mathbb{C}|\cb_\real)$ [[Measurable Function|measurable]].
> [!theorem]
>
> Let $f: \real \to \real$ be a [[Borel Measurable Function|Borel measurable function]] and $g: \real \to \real$ be any function, then $f \circ g$ is Lebesgue measurable if $g$ is Lebesgue measurable.
>
> *Proof*. Suppose that $g$ is Lebesgue measurable and let $E \in \cb_\real$ be a Borel set, then
> $
> \begin{align*}
> (f \circ g)^{-1}(E) &= g^{-1}(f^{-1}(E)) \\
> f^{-1}(E) \in \cb_\real &\Rightarrow g^{-1}(f^{-1}(E)) \in \lms
> \end{align*}
> $
> making $f \circ g$ Lebesgue measurable.