> [!theoremb] Theorem
>
> Let $(X, \cm, \mu)$ be a [[Measure Space|measure space]], and $\seq{f_j} \in L^+$ be a [[Sequence|sequence]] of $\cm$-[[Measurable Function|measurable functions]]. If $f_j \le f_{j+1}$ and $f_j \to f$ [[Pointwise Convergence|pointwise]], then the [[Integral|integral]] can be interchanged with the [[Limit|limit]]:
> $
> \limv{j}\int f_j d\mu = \int \limv{j}f_j d\mu
> $
>
> *Proof[^1]*. See [[Upper and Lower Approximations]]. Let $f \in L^+$, then take the strict approximation
> $
> \Sigma_f = \bracs{\phi \text{ simple}:0 \le \phi \le f, \phi(x) = f(x) \Leftrightarrow f(x) = 0}
> $
> as the collection of [[Simple Function|simple functions]] strictly below $f$, and $\int f = \sup_{\phi \in \Sigma_f}\int \phi$.
>
> ### Weak MCT
>
> Let $\psi \in \Sigma_f$, and suppose that $A_n \upto X$ and $\chi_{A_n} \cdot \psi \in \Sigma_{f_n}$, then the [[Limit Superior and Inferior|lower limit]] can be controlled:
> $
> \int \psi \le \liminf_{n \to \infty} \int f_n
> $
> *Proof*. As the integral on simple functions is a [[Measure Space|measure]], we can use continuity from below to obtain $\int \chi_{A_n} \cdot \psi \upto \int \psi$. Since each $\chi_{A_n} \cdot \psi \in \Sigma_{f_n}$,
> $
> \begin{align*}
> \int \chi_{A_n} \cdot \psi &\le \int f_n \\
> \int \phi &\le \liminf \int f_n
> \end{align*}
> $
> by controlling the lower limit of the sequence.
>
> ### Full MCT
>
> To relate $\int f$ to $\int f_n$, we use a chain reaction of sequences, where one controls the next until we reach the end.
>
> Let $\phi \in \Sigma_f$ and let $E_{n} = \bracs{x \in X: \phi(x) \le f_n(x)}$. Then $\chi_{E_{n}} \cdot \phi \le f_n(x)$ and $\chi_{E_{n}} \cdot \phi \in \Sigma_{f_n}$.
>
> Moreover, if $f(x) < \infty$,
> $
> \exists n \in \nat: f(x) - f_n(x) \le f(x) - \phi(x) \Rightarrow \phi(x) \le f_n(x)
> $
> and if $f(x) = \infty$,
> $
> \exists n \in \nat: \phi(x) \le f_n(x)
> $
> since $f_n(x) \upto f(x)$. Therefore $E_{n} \upto X$.
>
> Using the weak MCT, we can obtain
> $
> \int \phi \le \liminf \int f_n
> $
>
> Since $\liminf \int f_n \ge \int \phi \forall \phi \in \Sigma_f$,
> $
> \int f \le \liminf_{n \to \infty} \int f_n = \lim_{n \to \infty}\int f_n
> $
> and we can collapse the lower limit to obtain
> $
> \int \limv{n}f_n = \limv{n}\int f_n
> $
> [!theorem]
>
> Let $\seq{f_j} \subset L^+$ be an increasing sequence such that $\limv{j}f_j = f$ a.e., then $\int f = \limv{j}\int f_j$.
>
> *Proof*. $f - \limv{j}f_j$ is positive and equal to $0$ a.e. Therefore
> $
> \int f = \int \paren{f - \limv{j}f_j} + \int \limv{j}f_j =
> \limv{j}\int f_j
> $
> by monotone convergence theorem.
> [!theorem]
>
> Let $\bracs{f_n} \subset L^+$ be a finite or infinite [[Sequence|sequence]] in $L^+$ and $f = \sum_{n}f_n$, then the sum can be interchanged with the integral
> $
> \int f = \sum_{n}\int f_n
> $
>
> *Proof*. First deal with finite sums by induction on $n$. Let $f_1, f_2 \in L^+$, then there exists increasing sequences $\seq{\phi_j}, \seq{\psi_j}$ such that $f_1 = \limv{j}\phi_j$ and $f_2 = \limv{j}\psi_j$. By [[Monotone Convergence Theorem|monotone convergence theorem]], $\limv{j}\int \phi_j = \int f_1$ and $\limv{j}\int \psi_j = \int f_2$. Since $\limv{j}(\phi_j + \psi_j) = f_1 + f_2$,
> $
> \int(f_1 + f_2) = \limv{j}\int \phi_j + \limv{j}\int \psi_j = \int f_1 + f_2
> $
> Suppose that $\int\sum_{j = 1}^{n}f_n = \sum_{j = 1}^{n}\int f_n$, then
> $
> \begin{align*}
> \int \sum_{j = 1}^{n + 1}f_j &= \int \sum_{j = 1}^{n}f_j + \int f_{j + 1} \\
> &= \sum_{j = 1}^{n}\int f_j + \int f_{j + 1} \\
> &= \sum_{j = 1}^{n + 1}\int f_{j}
> \end{align*}
> $
> and the proposition holds for all $n \ge 2$.
>
> Now suppose that the sequence is infinite, then $\seq{\sum_{j = 1}^{n}f_j}$ is an increasing sequence of functions with $\limv{n}\sum_{j = 1}^{n}f_j = \sum_{n \in \nat}f_j$. By the [[Monotone Convergence Theorem|monotone convergence theorem]],
> $
> \int f = \int \limv{n}\sum_{j = 1}^{n}f_j = \limv{n}\int\sum_{j = 1}^{n}f_j = \limv{n}\sum_{j = 1}^{n}\int f_j = \sum_{n \in \nat}\int f_n
> $
[^1]: Alternate route that starts from the Uniform Convergence assumption used for Riemann integrals: [[From Uniform Convergence to Monotone Convergence]].