> [!definition]
>
> Let $X$ be a [[Set|set]] and $\cm$ be a [[Sigma Algebra|sigma algebra]] over $X$. A **measure** on $\cm$ is a [[Function|function]] $\mu: \cm \to [0, \infty]$ satisfying
> - $\mu(\bracs{}) = 0$
> - If $\bracs{E_j}_{1}^{\infty}$ is a [[Cardinality|countable]] [[Sequence|sequence]] of disjoint sets in $\cm$, then $\mu\paren{\bigcup_{j = 1}^{\infty}E_j} = \sum_{j = 1}^{\infty}\mu(E_j)$.
>
> If $\mu$ does not satisfy *countable additivity*, but does satisfy finite additivity, then $\mu$ is a **finitely additive** measure.
> [!definition]
>
> Let $X$ be a set and $\cm$ be a sigma algebra over $X$, then $(X, \cm)$ is a *measurable* space. If $\mu$ is a measure on $\cm$, then $(X, \cm, \mu)$ is a **measure space**.
> [!definition] Properties
>
> | Property | Definition |
> | ---- | ---- |
> | Finite | $\mu(X) < \infty$ |
> | $\sigma$-Finite | $X = \bigcup_{i \in I}E_i$, $\mu(E_i) < \infty \forall i \in I$ |
> | $\sigma$-Finite for $\mu$ | $E = \bigcup_{i \in I}E_i, \mu(E_i) < \infty \forall i \in I$ |
> | Semifinite | $\forall E \in \cm, \mu(E) = \infty, \exists F \in \cm, F \subset E: \mu(F) < \infty$ |
> [!theorem]
>
> Let $(X, \cm, \mu)$ be a measure space. If $\mu$ is $\sigma$-finite, then $\mu$ is semifinite.
>
> *Proof*. Let $E \in \cm$ such that $\mu(E) = \infty$. Since $X = \bigcup_{i \in I}E_i$ where $\mu(E_i) < \infty \forall i \in I$, $E \cap E_i \subseteq E, E_i$ and has finite measure.
> [!theorem]
>
> Let $(X, \cm, \mu)$ be a measure space. Then
> 1. **Monotonicity:** $\forall E, F \in \cm, E \subseteq F \Rightarrow \mu(E) \le \mu(F)$.
> 2. **Subadditivity**: For any sequence $\bracs{E_i} \subset \cm$, $\mu\paren{\bigcup_{i \in I}E_i} \le \sum_{i \in I}\mu(E_i)$.
> 3. **[[Continuity]] From Below:** For any sequence $\bracs{E_i} \subset \cm$ where $E_k \subseteq E_{k + 1}$, then $\mu\paren{\bigcup_{i \in I}E_i} = \lim_{i \to \infty}\mu(E_i)$.
> 4. **Continuity From Above:** For any sequence $\bracs{E_i} \subset \cm$ where $E_k \supseteq E_{k + 1}$ and $\mu(E_1) < \infty$, then $\mu(\bigcap_{i \in I}E_i) = \lim_{i \to \infty}E_i$.
>
> *Proof*. If $E \subseteq F$, then $E \cup (F \setminus E) = F$ and $\mu(F) = \mu(E) + \mu(F \setminus E)$, $\mu(F) \ge \mu(E)$.
>
> If we take $F_k = \bigcup_{i = 1}^{k}E_i \setminus \bigcup_{i = 1}^{k - 1}E_i$, then $\bigcup_{i = 1}^{k}E_i = \bigcup_{i = 1}^{k}F_i$ for all $k \in \nat$, and $\bracs{F_k}$ is a disjoint sequence of sets. Therefore
> $
> \mu\paren{\bigcup_{i = 1}^{\infty}E_i} = \mu\paren{\bigcup_{i = 1}^{\infty}F_i} = \sum_{i = 1}^{\infty}\mu(F_i) \le \sum_{i = 1}^{\infty}\mu(E_i)
> $
> since $F_k \subseteq E_k$.
>
> Let $E_0 = \emptyset$ and $F_k = E_{k} \setminus E_{k - 1}$, then similar to earlier, the $F_i$s are disjoint and $\bigcup_{i = 1}^{\infty}F_i = \bigcup_{i = 1}^{\infty}E_i$. Since $\bracs{E_i}$ is an ascending sequence,
> $
> \bigcup_{i = 1}^{k}F_k = \bigcup_{i = 1}^{k}E_i \setminus E_{i - 1} = E_k
> $
> as well. This means that
> $
> \begin{align*}
> \mu\paren{\bigcup_{i = 1}^{\infty}E_i} &= \mu\paren{\bigcup_{i = 1}^{\infty}F_i} \\
> &= \sum_{i = 1}^{\infty}\mu(F_i) \\
> &= \limv{n}\sum_{i = 1}^{n}\mu(F_i) \\
> &= \limv{n}\sum_{i = 1}^{n}[\mu(E_i) - \mu(E_{i - 1})] \\
> &= \limv{n}[\mu(E_n) - \mu(\emptyset)] \\
> &= \limv{n}\mu(E_n)
> \end{align*}
> $
>
> Finally, let $\bracs{E_i}$ be a shrinking sequence of sets with $\mu(E_1)<\infty$. Take $F_k = E_1 \setminus E_k$, then $F_k \cup E_k = E_1$ is a disjoint union, $\bigcup_{i = 1}^{k}F_i \cup \bigcap_{i = 1}^{k}E_i$ is also a disjoint union, and
> $
> \begin{align*}
> \mu\paren{\bigcap_{i = 1}^{\infty}E_i} = \mu\paren{E_1 \setminus \bigcup_{i = 1}^{\infty}F_i} &= \mu (E_1) - \mu\paren{\bigcup_{i = 1}^{\infty}F_i} \\
> &= \mu(E_1) - \lim_{i \to \infty}\mu\paren{F_i} \\
> &= \lim_{i \to \infty}[\mu(E_1) - \mu(F_i)] \\
> &= \lim_{i \to \infty}\mu\paren{E_1 \setminus F_i} \\
> &= \lim_{i \to \infty}\mu(E_i)
> \end{align*}
> $
> [!theorem]
>
> Let $(X, \cm, \mu)$ be a measure space and $\bracs{E_j}$ be a [[Sequence|sequence]] of sets in $\cm$, then the measure of the [[Limit Superior and Inferior|limit inferior]] is less than the limit inferior of the measure
> $
> \mu(\liminf E_j) \le \lim\inf \mu(E_j)
> $
> and the measure of the limit superior is greater than the limit superior of the measure
> $
> \mu\paren{\bigcup_{j = 1}^{\infty}E_j} < \infty \Rightarrow \mu(\limsup E_j) \ge \limsup \mu(E_j) \quad
> $
>
> *Proof*. First we note that
> $
> \bigcap_{j = k}^\infty E_j \subseteq \bigcap_{j = k + 1}^\infty E_j \quad \forall k \in \nat
> $
> and that
> $
> \bigcap_{j = k}^\infty E_j \subseteq E_l \quad \forall l \ge k
> $
> This gives
> $
> \mu\paren{\bigcap_{j = k}^{\infty}E_j} \le \mu(E_l)\ \forall l \ge k \Rightarrow \mu\paren{\bigcap_{j = k}^{\infty}E_j} \le \inf \bracs{\mu(E_l): l \ge k}
> $
> and we have
> $
> \begin{align*}
> \mu\paren{\bigcup_{k = 1}^{n}\bigcap_{j = k}^{\infty}E_j} \le \mu\paren{\bigcap_{j = n}^{\infty}E_j} \le \inf\bracs{\mu(E_j): j \ge n}
> \end{align*}
> $
> By continuity from below,
> $
> \begin{align*}
> \mu\paren{\bigcup_{k = 1}^{\infty}\bigcap_{j = k}^\infty E_j} = \lim_{n \to \infty}\mu\paren{\bigcup_{k = 1}^n \bigcap_{j = k}^{\infty}E_j} &\le \lim_{n \to \infty}\inf\bracs{\mu(E_j): j \ge n} \\
> &= \liminf \mu(E_j)
> \end{align*}
> $
> We now note that
> $
> \bigcup_{j = k}E_j \supseteq \bigcup_{j = k + 1}E_j \quad \forall k \in \nat
> $
> and that
> $
> \bigcup_{j = k}E_j \supseteq E_l \quad \forall l \ge k
> $
> This gives
> $
> \mu\paren{\bigcup_{j = k}^{\infty}E_j} \ge \mu(E_l)\ \forall l \ge k \Rightarrow \mu\paren{\bigcup_{j = k}^{\infty}E_j} \ge \sup\bracs{\mu(E_l): l \ge k}
> $
> and by continuity from above (which we can use since $\mu\paren{\bigcup_{j = 1}^{\infty}E_j} < \infty$)
> $
> \begin{align*}
> \mu\paren{\bigcap_{k = 1}^{\infty}\bigcup_{j = k}^{\infty}E_k} = \lim_{n \to \infty}\mu\paren{\bigcap_{k = 1}^{n}\bigcup_{j = k}E_j} &\ge \lim_{n \to \infty} \sup \bracs{\mu(E_j): j \ge n} \\
> &= \limsup \mu(E_j)
> \end{align*}
> $
> [!theorem]
>
> Let $(X, \cm, \mu)$ be a measure space and $E, F \in \cm$, then
> $
> \mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)
> $
> *Proof*. We break $E, F$ into pieces $E \setminus F, E \cap F, F \setminus E$, then
> $
> \begin{align*}
> \mu(E) + \mu(F) &= \mu(E \setminus F) + \mu(E \cap F) + \mu(F \setminus E) + \mu(E \cap F)\\
> &= \mu(E \cup F) + \mu(E \cap F)
> \end{align*}
> $
### Common Measures
> [!definition] Counting Measure
>
> Let $S$ be a finite set and take the Boolean algebra to be the [[Power Set|power set]] $\mathcal{P}(S)$. For each $A \in \mathcal{P}(S)$, define $m(A) = \#(A)$ as the **counting measure**.
> [!definition] Dirac Measure at a
>
> Let $S = \real$ and $\Sigma(S)$ be the set of all [[Broken Line|broken lines]] $\mathcal{I}(\real)$. Fix a number $a \in \real$, and define a the **Dirac measure at a** $\delta_a$ by:
> $
> \begin{align*}
> \delta_a(J) = 1 &\quad \text{if}\ a \in J, \\
> \delta_{a}(J) = 0 &\quad \text{if}\ a \not\in J
> \end{align*}
> $
> for all broken lines $J$.
>
> Note that only one broken line $J$ in a set of disjoint broken lines can have a Dirac measure of 1.