> [!theorem]
>
> Let $X$ be a [[Set|set]] and let $\alg$ be an [[Algebra|algebra]] over $X$. Then the smallest [[Monotone Class|monotone class]] generated by $\alg$ coincides with the smallest [[Sigma Algebra|sigma algebra]] generated by $\alg$.
> $
> \cc(\alg) = \cm(\alg)
> $
> *Proof*. Denote $\cm = \cm(\alg)$ and $\cc = \cc(\alg)$. Since every $\sigma$-algebra is a monotone class, $\cm \supseteq \cc$.
>
> Since $\cc \supset \alg$, $\emptyset, X \in \cc$. Let $E \in \cc$, and define
> $
> \cc(E) = \bracs{F \in \cc(\alg): E \setminus F, F \setminus E, E \cap F \in \cc}
> $
> Then for any increasing sequence $\seq{F_n}$,
> $
> \begin{align*}
> E \setminus \bigcup_{n \in \nat}F_n &= \bigcap_{n \in \nat}E \setminus F_n \in \cc \\
> \paren{\bigcup_{n \in \nat}F_n} \setminus E &= \bigcup_{n \in \nat}F_n \setminus E \in \cc \\
> E \cap \bigcup_{n \in \nat}F_n &= \bigcup_{n \in \nat}E \cap F_n \in \cc
> \end{align*}
> $
> their union is in $\cc$. For any decreasing sequence $\seq{G_n}$,
> $
> \begin{align*}
> E \setminus \bigcap_{n \in \nat}G_n &= \bigcup_{n \in \nat} E \setminus G_n \in \cc \\
> \paren{\bigcap_{n \in \nat}G_n} \setminus E &= \bigcap_{n \in \nat}G_n \setminus E \in \cc \\
> E \cap \bigcap_{n \in \nat}G_n &= \bigcap_{n \in \nat}E \cap G_n \in \cc
> \end{align*}
> $
> and $\cc(E)$ is a monotone class.
>
> If $E \in \alg$, then every element of $\alg$ satisfies $E \setminus F, F \setminus E, E \cap F \in \cc$, therefore $\cc(E)$ contains $\alg$ and $\cc(E) = \cc$. Let $F \in \cc$, then $F \in \cc(E)$ for all $E \in \alg$. Since the relation $E \setminus F, F \setminus E, E \cap F \in \cc$ is symmetric, we have $E \in \cc(F)$ for all $E \in \alg$, and $\cc(F) = \cc$.
>
> Let $E, F \in \cc$, then $E \in \cc(F)$ and $F \in \cc(E)$. Then $E \setminus F$, $F \setminus E$, and $E \cap F$ are all in $\cc$. Using this fact, since $X \in \cc$, $E^c = X \setminus E \in \cc$ for any $E \in \cc$. This way, for any $E, F \in \cc$,
> $
> E \cup F = (E^c \cap F^c)^c \in \cc
> $
> Therefore $\cc$ is an algebra.
>
> Let $\seq{E_n} \subset \cc$, then since $\cc$ is closed under countable increasing unions,
> $
> \bigcup_{n \in \nat}E_n = \bigcup_{n \in \nat}\bigcup_{i = 1}^{n}E_n \in \cc
> $
> it is a $\sigma$-algebra.
>
> Therefore $\cc \supseteq \cm$.