> [!theorem]
>
> Let $X$ be a [[Locally Compact Hausdorff Space|LCH]] space and $\seqi{U}$ be an [[Open Cover|open cover]] of $X$. Suppose that
> 1. For each $i \in I$, there exists a [[Linear Functional|functional]] $\phi_i \in C_c(U_i)^*$ on the [[Compactly Supported|compactly supported]] continuous functions.
> 2. Whenever $U_i \cap U_j \ne \emptyset$, $\phi_i|_{C_c(U_i \cap U_j)} = \phi_j|_{C_c(U_i \cap U_j)}$.
>
> Then there exists a linear functional $\phi \in C_c(X)^*$ such that $\phi|_{C_c(U_i)} = \phi_i$ for all $i \in I$. If each $\phi_i$ is [[Positive Linear Functional|positive]], then $\phi$ is positive as well.
>
> *Proof*. Let $f \in C_c(X)$ and $K = \supp{f}$. Let $\seqf{U_j}$ be a finite subcover of $K$, $\seqf{\phi_j}$ be the associated functionals, and $\seqf{\chi_j}$ be a [[Partition of Unity|partition of unity]] subordinate to it. Define
> $
> \angles{\phi, f} = \sum_{j = 1}^n \angles{\phi_j, \chi_jf}
> $
> Let $\bracs{V_j}_1^m$ be another finite subcover of $K$, $\bracs{\psi_j}_1^m$ be the associated functionals, and $\bracs{\omega_j}_1^n$ be a partition of unity subordinate to it. In this case, for each fixed $1 \le i \le n$, by assumption $(2)$,
> $
> \angles{\phi_i, \chi_if} = \sum_{j = 1}^m\angles{\phi_i, \chi_i\omega_jf} = \sum_{j = 1}^m \angles{\psi_j, \chi_i\omega_jf}
> $
> On the flip side, for each fixed $1 \le j \le m$,
> $
> \angles{\psi_j, \omega_j f} = \sum_{i = 1}^n\angles{\psi_j, \chi_i\omega_jf} = \sum_{i = 1}^n\angles{\phi_i, \chi_i\omega_jf}
> $
> Therefore
> $
> \begin{align*}
> \sum_{i = 1}^n\angles{\phi_i, \chi_if} &= \sum_{i = 1}^n\sum_{j = 1}^m\angles{\phi_i, \chi_i\omega_jf} \\
> &= \sum_{i = 1}^n\sum_{j = 1}^m\angles{\psi_j, \chi_i\omega_jf} = \sum_{j = 1}^m\angles{\psi_j, \omega_j f}
> \end{align*}
> $
> and this is well-defined. The restriction property comes from the well-defined property.