> [!theorem]
>
> Let $(X, \cm)$ be a [[Measure Space|measurable space]], $\nu$ be a $\sigma$-finite [[Signed Measure|signed measure]], and $\mu$, $\lambda$ be $\sigma$-finite positive measures on $(X, \cm)$ such that $\nu$ is [[Absolute Continuity|absolutely continuous]] with respect to $\mu$, and $\mu \ll \lambda$.
>
> Let $g \in L^1(\nu)$ is [[Integrable Function|integrable]] with respect to $\nu$, then $g \cdot \frac{d\nu}{d\mu} \in L^1(\mu)$ is integrable with respect to $\mu$. The integral can be evaluated with respect to $\mu$ instead with the [[Lebesgue-Radon-Nikodym Theorem|Radon-Nikodym derivative]]:
> $
> \int g d\nu = \int g \frac{d\nu}{d\mu}d\mu
> $
>
> Moreover, $\nu \ll \lambda$ and
> $
> \frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} \quad \lambda\ \text{a.e.}
> $
> *Proof*. First suppose that $\nu$ is a $\sigma$-finite positive measure. Let $\chi_E$ be an [[Indicator Function|indicator function]], then
> $
> \int \chi_{E}d\nu = \nu(E) = \int_E\frac{d\nu}{d\mu}d\mu = \int \chi_{E}\frac{d\nu}{d\mu}d\mu
> $
> which extends to any [[Simple Function|simple functions]] by linearity. Let $g \in L^+(\nu)$ and $\seq{\phi_n}$ be a [[Sequence|sequence]] of simple functions such that $\phi_n \upto g$. Then
> $
> \int g d\nu = \limv{n}\int \phi_n d\nu = \limv{n}\int \phi_n \frac{d\nu}{d\mu}d\mu = \int g\frac{d\nu}{d\mu}d\mu
> $
> by the [[Monotone Convergence Theorem]]. In which case, if $g \in L^1(\nu) \cap L^+(\nu)$, $g\frac{d\nu}{d\mu} \in L^1(\mu) \cap L^+(\mu)$ as well. For any $g \in L^1(\nu)$,
> $
> \begin{align*}
> \int gd\nu &= \int g^+ d\nu - \int g^- d\nu \\
> &= \int g^+ \frac{d\nu}{d\mu}d\mu - \int g^-\frac{d\nu}{d\mu}d\mu \\
> &= \int g\frac{d\nu}{d\mu}d\mu
> \end{align*}
> $
> Now suppose that $\nu$ is a signed $\sigma$-finite measure. Let $\nu = \nu^+ - \nu^-$ be its [[Jordan Decomposition Theorem|Jordan decomposition]], then
> $
> \begin{align*}
> \int g d\nu &= \int gd\nu^+ - \int gd\nu^- \\
> &= \int g\frac{d\nu^+}{d\mu}d\mu - \int d\frac{d\nu^-}{d\mu}d\mu \\
> &= \int g\paren{\frac{d\nu^+}{d\mu} - \frac{d\nu^-}{d\mu}}d\mu \\
> &= \int g\frac{d\nu}{d\mu}d\mu
> \end{align*}
> $
> Lastly, let $g = \chi_{E}\frac{d\nu}{d\mu}$, then
> $
> \nu(E) = \int \paren{\chi_{E}\frac{d\nu}{d\mu}}d\mu
> = \int \paren{\chi_{E}\frac{d\nu}{d\mu}}\frac{d\mu}{d\lambda}d\lambda = \int_E\frac{d\nu}{d\mu}\frac{d\mu}{d\lambda}d\lambda
> $
> and since both are Radon-Nikodym derivatives,
> $
> \frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu}\frac{d\mu}{d\lambda} \quad \lambda\ \text{a.e.}
> $
> they are equal $\lambda$-[[Almost Everywhere|a.e.]]