> [!definition]
>
> Let $(x_n)$ be a [[Sequence|sequence]]. It is *properly* divergent if
> $
> \forall \alpha \in \real, \exists N \in \nat: \forall n \ge N, x_n \ge \alpha
> $
> or
> $
> \forall \alpha \in \real, \exists N \in \nat: \forall n \ge N, x_n \le \alpha
> $
> This is denoted as
> $
> \limv{n}x_n = \infty \quad \limv{n}x_n = -\infty
> $
> [!theorem]
>
> Let $(x_n)$ be a sequence. It can only be *properly* divergent in a given direction if it is not bounded in that direction. If $(x_n)$ is monotone and unbounded, then it is properly divergent.
> [!theorem]
>
> Let $(x_n)$ and $(y_n)$ be two sequences with $x_n \ge y_n \forall n \in \nat$. Then if $\limv{n}y_n = \infty$, $\limv{n}x_n = \infty$, and if $\limv{n}x_n = - \infty$, $\limv{n}y_n = -\infty$.
> [!theorem]
>
> Let $(x_n)$ be a properly diverging sequence with $\limv{n}x_n = \infty$, and $c \in \real$, $c \ne 0$. Then, $\limv{n}cx_n = \infty$ if $c > 0$ and $\limv{n}cx_n = -\infty$ if $c < 0$.
> [!theorem]
>
> Let $(x_n)$ and $(y_n)$ be increasing, strictly positive sequences. Suppose that $\exists\limv{n}\frac{x_n}{y_n} = L > 0$. Then
> $
> \limv{n}x_n = \infty \Leftrightarrow \limv{n}y_n = \infty
> $
>
> *Proof*. Take $\varepsilon = L/2$. Then
> $
> \exists N \in \nat: \forall n \ge N, L - L/2 < \frac{x_n}{y_n} < L + L/2
> $
> or
> $
> \frac{L}{2}y_n < x_n < \frac{3L}{2}y_n
> $
> therefore $\limv{n}x_n = \infty \Leftrightarrow \limv{n}y_n = \infty$, enforced by this inequality.
> [!theorem]
>
> If $\limv{n}\frac{x_n}{y_n} = 0$ and $\limv{n}x_n = \infty$, then $\limv{n}y_n = \infty$.
>
> *Proof*. Take $\varepsilon = 1$, then
> $
> \exists N \in \nat: \forall n \ge N, \abs{\frac{x_n}{y_n}} < 1 \Leftrightarrow \abs{x_n} < \abs{y_n}
> $
> which conducts the proper divergence.
> [!theorem]
>
> Let $(x_n)$ be a properly divergent sequence and $(y_n)$ be a bounded sequence. Then $\limv{n}(x_n + y_n) = \pm \infty$.