> [!theorem]
>
> Let $U \subset \cx$ be open, and $\seq{f_n} \subset C^1$ with each $f_n: U \to \cy$. If $f_n \to f$ [[Pointwise Convergence|pointwise]] and $Df_n \to g$ converges [[Uniform Convergence|uniformly]], then $f$ is differentiable with $Df = g$.
>
> *Proof*. Let $x \in U$ and $V \subset U$ be an open neighbourhood of $x$. For any $m, n \in \nat$, by the mean value theorem,
> $
> \begin{align*}
> &\abs{f_n(x + h) - f_m(x + h) - (f_n(x) - f_m(x))} \\
> &\le \abs{h} \sup_{y \in V}\abs{Df_n(y) - Df_m(y)}
> \end{align*}
> $
> Let $\varepsilon > 0$, then there exists $N \in \nat$ such that
> $
> \norm{Df_m - Df_n}_u, \norm{Df_n - g}_u < \varepsilon \quad \forall m, n \ge N
> $
> and sending $m \to \infty$ yields
> $
> \begin{align*}
> &\abs{f_n(x + h) - f(x + h) - (f_n(x) - f(x))} \\
> &\le \limv{m}\abs{h} \sup_{y \in V}\abs{Df_n(y) - Df_m(y)} \\
> &\le \abs{h} \cdot \varepsilon
> \end{align*}
> $
> for all $n \ge N$ thanks to uniform convergence.
>
> By the mean value theorem again,
> $
> \abs{f_n(x + h) - f_n(x) - Df_n(x)h} \le \abs{h}\sup_{x + h \in V}\abs{Df(x + h) - Df(x)}
> $
> Since each $f_n \in C^1$, there exists $\delta > 0$ such that
> $
> \abs{Df(x + h) - Df(x)} < \varepsilon \quad \forall h: \abs{h} < \delta
> $
> Combining the two above inequalities and $\norm{Df_n - g}_u < \varepsilon$, we have
> $
> \begin{align*}
> &\abs{f(x + h) - f(x) - g(x)h} \\
> &\le \abs{f(x + h) - f(x) - Df_n(x)h} + \abs{h} \cdot \varepsilon \\
> &\le \abs{f(x + h) - f(x) - (f_n(x + h) - f_n(x))} + 2\abs{h} \cdot \varepsilon \\
> &\le 3\abs{h} \cdot \varepsilon
> \end{align*}
> $
Let $U \subset \real$