> [!theorem]
>
> Let $\cx, \cy$ be [[Banach Space|Banach spaces]], then the map
> $
> L(\cx, \cy) \times \cx \quad (T, x) \mapsto Tx
> $
> is [[Bounded Linear Map|bounded]] and [[Multilinear Map|bilinear]]. Let $J = [a, b]$ be a closed interval and $\alpha: J \to L(\cx, \cy)$ be a [[Continuity|continuous]] map, then we can integrate along the curve
> $
> \int_a^b \alpha(t)dt \in L(\cx, \cy)
> $
> If $\alpha$ is [[Derivative|differentiable]], then $\frac{d\alpha}{dt}(t) \in L(\cx, \cy)$ as well.
> [!theorem]
>
> Let $\alpha: J \to L(\cx, \cy)$ be a continuous map and $x \in \cx$, then
> $
> \int_a^b \alpha(t)(x)dt = \int_a^b \alpha(t)dt \cdot x
> $
> *Proof*. The map $\lambda \mapsto \lambda x$ is linear and bounded. Therefore it can be taken out of the integral.
> [!theorem] Mean Value Theorem
>
> Let $\cx, \cy$ be [[Banach Space|Banach spaces]], $U \subset \cx$ be [[Open Set|open]] and $x \in U$. Let $y \in \cx$, and $f: U \to \cy$ be a $C^1$ map. If the line $\bracs{x + ty: t \in [0, 1]} \subset U$, then
> $
> f(x + y) - f(x) = \int_0^1Df(x + ty)(y) dt = \int_0^1Df(x + ty)dt \cdot y
> $
> *Proof*. Let $g(t) = f(x + ty)$, then $Dg(t) = Df(x + ty) \circ y$ by the chain rule. Since $g$ is continuous on $[0, 1]$, by the Fundamental Theorem of Calculus,
> $
> \begin{align*}
> g(1) - g(0) &= \int_0^1 Dg(t)dt \\
> f(x + y) - f(x) &= \int_0^1 Df(x + ty)(t)dt \\
> &= \int_0^1Df(x + ty)dt \cdot y
> \end{align*}
> $
> [!theorem]
>
> Let $U \subset \cx$ be open and $x, z \in U$ such that the line segment
> $
> L = \bracs{tx + (1 - t)z: t \in [0, 1]}
> $
> lies in $U$. If $f \in C^1$, then
> $
> \norm{f(z) - f(x)} \le \norm{z - x} \cdot \sup_{v \in L}\norm{Df(v)}
> $
> *Proof*. By the mean value theorem with $y = z - x$,
> $
> \begin{align*}
> f(z) - f(x) &= \int_0^1 Df(x + t(z - x))dt \cdot (z - x) \\
> \norm{f(z) - f(x)}&= \norm{\int_0^1 Df(x + t(z - x))\cdot (z - x)dt} \\
> &\le \int_0^1\norm{Df(x + t(z - x)) \cdot (z - x)}dt \\
> &\le \int_0^1 \sup_{t \in [0, 1]}\norm{Df(x + t(z - x))} \cdot \norm{z - x}dt \\
> &= \sup_{z \in L}\norm{Df(z)} \cdot \norm{z - x}
> \end{align*}
> $
> where the supremum exists since $f \in C^1$ and $Df \in C^0$.
> [!theorem]
>
> Let $U \subset \cx$ be open and $x, z, x_0 \in U$ such that the line segment
> $
> L = \bracs{tx + (1 - t)z: t \in [0, 1]}
> $
> lies in $U$. Then
> $
> \norm{f(z) - f(x) - Df(x_0)(z - x)} \le \norm{z - x} \sup_{v \in L}\norm{Df(v) - Df(x_0)}
> $
> *Proof*.
> $
> \begin{align*}
> &f(z) - f(x) \\
> &= \int_0^1 Df(x + t(z - x))(z - x)dt \\
> &= \int_0^1 \braks{Df(x + t(z - x)) - Df(x_0) + Df(x_0)}(z - x)dt \\
> &= Df(x_0)(z - x) + \int_0^1 \braks{Df(x + t(z - x)) - Df(x_0)}(z - x)dt \\
> &\le Df(x_0) + \sup_{z \in L}\norm{Df(v) - Df(x_0)} \cdot \norm{z - x}
> \end{align*}
> $