> [!note] Formula > > If the [[Science/Math/Functions/Function|functions]] $f$ and $g$ are both [[Derivative|differentiable]], then the [[Derivative|derivative]] of their quotient can be calculated as follows: > > $ > \frac{d}{dx}\frac{f(x)}{g(x)} = > \frac{ > \frac{df(x)}{dx} \cdot g(x) - f(x) \cdot \frac{dg(x)}{dx}} > {(g(x))^2} > $ > [!info] Proof > > $ > \begin{align*} > \frac{d}{dx}\frac{f(x)}{g(x)} &= > \lim_{h \to 0}{ > \frac{1}{h} \cdot > \left(\frac{f(x + h)}{g(x + h)} - > \frac{f(x)}{g(x)} > \right)} \\ > &= \lim_{h \to 0}{ > \frac{1}{h} \cdot > \frac{f(x + h)g(x) - f(x)g(x + h)}{g(x + h)g(x)} > }\\ > &= \lim_{h \to 0}{ > \frac{1}{h} \cdot > \frac{1}{g(x + h)g(x)} \cdot > (f(x + h)g(x) - f(x)g(x + h)) > }\\ > &= \frac{1}{g(x)g(x)} \cdot \lim_{h \to 0}{ > \frac{1}{h} \cdot > (f(x + h)g(x) - f(x)g(x + h)) > }\\ > &= \frac{1}{(g(x))^2} \cdot \lim_{h \to 0}{ > \frac{1}{h} \cdot > (f(x + h)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x + h)) > }\\ > &= \frac{1}{(g(x))^2} \cdot \lim_{h \to 0}{ > \frac{1}{h} \cdot > ((f(x + h) - f(x))g(x) - f(x)(g(x + h) - g(x))) > }\\ > &= \frac{1}{(g(x))^2} \cdot \left(\lim_{h \to 0}{ > \frac{(f(x + h) - f(x))g(x)}{h} > } - \lim_{h \to 0}{ > \frac{f(x)(g(x + h) - g(x))}{h} > }\right) \\ > &= \frac{1}{(g(x))^2} \cdot \left(\lim_{h \to 0}{ > \frac{(f(x + h) - f(x))g(x)}{h} > } - \lim_{h \to 0}{ > \frac{f(x)(g(x + h) - g(x))}{h} > }\right) \\ > &= \frac{1}{(g(x))^2} \cdot \left(g(x) \cdot \lim_{h \to 0}{ > \frac{f(x + h) - f(x)}{h} > } - f(x) \cdot \lim_{h \to 0}{ > \frac{g(x + h) - g(x)}{h} > }\right) \\ > &= \frac{1}{(g(x))^2} \cdot \left( > \frac{df(x)}{dx} \cdot g(x) - f(x) \cdot \frac{dg(x)}{dx} \right) \\ > &= \frac{ > \frac{df(x)}{dx} \cdot g(x) - f(x) \cdot \frac{dg(x)}{dx}} > {(g(x))^2} > \end{align*} > $