> [!note] Definition
>
> $
> \begin{align*}
> \int_{a}^{\infty}f(x)\ dx &= \lim_{t \to \infty}\int_{a}^{t} f(x)\ dx \\
> \int_{-\infty}^{a}f(x)\ dx &= \lim_{t \to -\infty}\int_{t}^{a} f(x)\ dx \\
> \int_{-\infty}^{\infty}f(x)\ dx &= \int_{-\infty}^{a}f(x)\ dx + \int_{a}^{\infty} f(x)\ dx \\
> \end{align*}
> $
>
> An improper integral is the [[Limit|limit]] of a [[Definite Integral|definite integral]] as the endpoint of the bounds approach some number, either because the bounds approach infinity, or because there is a [[Continuity|discontinuity]] on the integrand at the bounds.