> [!note] Definition
>
> $
> \int_{a}^{\infty}\frac{1}{x^p}dx
> $
> The p-integral is an [[Improper Integral|improper integral]] of a function $f(x) = \frac{1}{x^p}$ from some value $a$ to $\infty$. The integral converges to a finite value if $p > 1$, and diverges to infinity if $p \le 1$.
> $
> \begin{align*}
> \text{if}\ p \gt 1 \text{ then } &\int_{a}^{\infty}\frac{1}{x^p}dx \\
> &= -\frac{1}{(p - 1)x^{p - 1}}\bigg|^{\infty}_{a} \\
> &= \frac{1}{(p - 1)a^{p - 1}} \\
> \text{if}\ p \le 1 \text{ then } &\int_{a}^{\infty}\frac{1}{x^p}dx = \infty \\
> \end{align*}
> $