> [!note] Formula
>
> $
> \int{f(g(x))g^\prime(x)}dx = \int{f(u)du} \quad \text{where} \quad u = g(x)
> $
If $u = g(x)$ is a [[Derivative|differentiable]] [[Function|function]] whose range is on an interval $l$, and $f$ is continuous on $l$, then the [[Antiderivative|integral]] of the composite function $f(g)$ is:
$
\int{f(g(x))g^\prime(x)}dx = \int{f(u)du}
$
Since
$
du = dg(x) = g^\prime(x)dx
$
- See [[Math/Calculus/Derivative/Chain Rule|chain rule]].