> [!theorem] Strategy
>
> Let $(L)$ be an [[Ordinary Differential Equation|ODE]]. $(L)$ is a **Bernoulli** equation if it has the form
> $
> \frac{dy}{dx} + f(x)y = g(x)y^n
> $
> If $n = 0$ or $n = 1$, then this is a [[Linear Ordinary Differential Equation|linear ODE]]. Otherwise, make a substitution $v = y^q$. Then
> $
> \frac{dv}{dx} = qy^{q - 1}\frac{dy}{dx}
> $
> And we can substitute
> $
> qy^{q - 1}\frac{dy}{dx} = qy^{q - 1}\paren{g(x)y^n - f(x)y}
> $
> and
> $
> \frac{dv}{dx} = qg(x)y^{n + q - 1} - qf(x)y^{q}
> $
> with
> $
> \frac{dv}{dx} = qg(x)y^{n + q - 1} - qf(x)v
> $
> Choose $q = 1 - n$, then we can vanish a term
> $
> \frac{dv}{dx} = qg(x) - qf(x)v
> $
> This should create a [[First Order Linear ODE]].
> $
> \frac{dv}{dx} + (1 - n)f(x)v = (1 - n)g(x)
> $