> [!theorem] Strategy
>
> Let $(L)$ be a first order linear [[Ordinary Differential Equation|ODE]],
> $
> a_1(t)\frac{dy}{dt} + a_0(t)y = g(t) \Rightarrow
> \frac{dy}{dt} + \frac{a_0}{a_1}y = \frac{g}{a_0}
> $
> Then using the [[Product Rule|product rule]], introduce an integrating factor and write
> $
> u\frac{dy}{dt} + puy = uq
> $
> then choose $u(t)$ such that $\frac{du}{dt}=pu$ (solve as [[Separable ODE|separable ODE]]). In which case,
> $
> \frac{d}{dt}uy = uq \Rightarrow
> y = \frac{C}{u} + \frac{1}{u}\int uq dt
> $
> Where we can simply pick $u = e^{\int pdt}$.