> [!theorem] Strategy
>
> The first order [[Ordinary Differential Equation|ordinary differential equation]]
> $
> M(x, y)dx + N(x, y)dy = 0
> $
> or
> $
> M(x, y) + N(x, y)\frac{dy}{dx} = 0
> $
> is homogeneous if $M$ and $N$ are both homogeneous of the same degree.
>
> Make a substitution on $x$ or $y$ with $y = xu(x)$. Then
> $
> \frac{dy}{dx} = x\frac{du}{dx} + u
> $
> Replacing $dy$ with $x du + u dx$, then the equation becomes
> $
> M(x, xu) dx + N(x, xu)(xdu + udx) = 0
> $
> Since $M$ and $N$ are both homogeneous of the same degree, we can take out the $x$ factor
> $
> x^dM(1, u)dx + x^dN(1, u)(xdu + udx) = 0
> $
> and
> $
> M(1, u)dx + N(1, u)(xdu + udx) = 0
> $
> to obtain
> $
> (M(1, u) + uN(1, u))dx + N(1, u)xdu = 0
> $
> The resulting equation should always be separable.
> $
> \frac{dx}{x} + \frac{N(1, u)}{M(1, u) + uN(1, u)}du = 0
> $
> Simply integrate to solve.