> [!definition]
>
> $
> a(t)\frac{d^2y}{dt^2} + b(t)\frac{dy}{dt} + c(t) = 0
> $
> Let $(L)$ be a second order [[Ordinary Differential Equation|ODE]]. Then all solutions of $(L)$ can be expressed as [[Linear Combination|linear combinations]] of two functions, which also takes care of the constants.
> [!theorem] Strategy
>
> Suppose that $y_1(t)$ solves the ODE, then let $y(t) = u(t)y_1(t)$ where $y$ is also assumed to solve $(L)$, then we have
> $
> y = uy_1 \quad \frac{dy}{dt}=\frac{du}{dt}y_1 + u\frac{dy_1}{dt}
> $
> and
> $
> \frac{d^2y}{dt^2} = \frac{d^2u}{dt^2}y_1 + 2\frac{d_1y}{dt}\frac{du}{dt} + u\frac{d^2y_1}{dt^2}
> $
> Then we can write
> $
> \begin{align*}
> 0 &= a(t)\frac{d^2y}{dt^2} + b(t)\frac{dy}{dt} + c(t) \\
> &= a\paren{\frac{d^2u}{dt^2}y_1 + 2\frac{d_1y}{dt}\frac{du}{dt} + u\frac{d^2y_1}{dt^2}} \\
> &+b\paren{\frac{du}{dt}y_1 + u\frac{dy_1}{dt}} + cuy_1 \\
> &= ay_1\frac{d^2u}{dt^2} + \paren{2a\frac{dy_1}{dt} + by_1}\frac{du}{dt} \\
> &+\paren{a\frac{d^2y_1}{dt^2} + b\frac{dy_1}{dt} + cy_1}u \\
> &= ay_1\frac{d^2u}{dt^2} + \paren{2a\frac{dy_1}{dt} + by_1}\frac{du}{dt} \\
> &+\cancel{\paren{a\frac{d^2y_1}{dt^2} + b\frac{dy_1}{dt} + cy_1}}u \\
> &= ay_1\frac{d^2u}{dt^2} + \paren{2a\frac{dy_1}{dt} + by_1}\frac{du}{dt}
> \end{align*}
> $
> Let $v = \frac{du}{dt}$, then we have created
> $
> 0 = ay_1 \frac{dv}{dt} + \paren{2a\frac{dy_1}{dt}+by_1}v
> $
> a [[First Order Inexact ODE|first order ODE]].