> [!definition]
>
> Let $U \subset \real^d$ be an [[Open Set|open set]]. A **distribution** $T$ on $U$ is a continuous linear functional on $\cd(U)$. The space $\cd'(U)$ is the [[Topological Dual|dual]] of the [[Space of Test Functions|space of test functions]], equipped with the [[Weak Topology|weak-* topology]].
> [!definition]
>
> Let $f \in \loci$ be a [[Locally Integrable|locally integrable]] function, then the mapping
> $
> T_f: \cd(U) \to \complex \quad \phi \mapsto \angles{f, \phi} = \int_U f \phi dx
> $
> is a distribution. If $T \in \cd'(U)$ and there exists $f \in \loci$ such that $T = T_f$, then the distribution $T$ is the **function** $f$. If there exists another function $g \in \loci$ such that $T_f = T_g$, then $f = g$ [[Almost Everywhere|almost everywhere]].
>
> *Proof*. Let $V \subset U$ be a bounded [[Open Set|open set]], and let $\seq{\phi_n}$ be a sequence of [[Space of Test Functions|test functions]] such that $0 \le {\phi_n} \le \chi_{U}$ but $\phi_n \upto \int \chi_U$ pointwise. By the [[Dominated Convergence Theorem]],
> $
> \angles{f, \chi_U} = \limv{n}\angles{f, \phi_n} = \limv{n}\angles{g, \phi_n} = \angles{g, \chi_U}
> $
> Hence $E \mapsto \int_E (f - g)$ (when restricted to bounded sets) is a [[Signed Measure|signed measure]] that assigns $0$ to all bounded open sets. By the [[Lebesgue Differentiation Theorem]], $(f - g) = 0$ almost everywhere.
# Operations on Distributions
> [!definition]
>
> Let $z \in \real^d$, $f \in \loci(U + z)$ and $\phi \in \cd(U)$. If $\tau_z$ is the translation map by $z \in \real^d$, then
> $
> \begin{align*}
> \angles{\tau_zf, \phi} &= \int_{U} f(x - z)\phi(x)dx \\
> &= \int_{U + z} f(x )\phi(x + z)dx = \angles{f, \tau_{-z}\phi}
> \end{align*}
> $
> [[Linear Operator on Distribution|Extend this]] to distributions and define $\tau_z: \cd'(U + z) \to \cd'(U)$ by
> $
> \angles{\tau_zT, \phi} = \angles{T, \tau_{-z}\phi}
> $
> as the translation map on distributions.
> [!definition]
>
> Let $S \in \laut{\real^d}$ be an invertible linear map, and $V = S^{-1}(U)$. Define $T: \loci{(V)} \to \loci{(U)}$ be defined by $f \mapsto f \circ T$, then for any $\phi \in \cd(U)$,
> $
> \begin{align*}
> \angles{Tf, \phi} &= \int_{U}(f \circ S)\phi = |\det S^{-1}|\int_V f (\phi \circ S^{-1}) \\
> &= |\det S^{-1}|\angles{f,\phi \circ S^{-1}}
> \end{align*}
> $
> Therefore for any $F \in \cd'(U)$, define the composition $F \circ S \in \cd'(V)$ by
> $
> \angles{F \circ S, \phi} = |\det S^{-1}|\angles{f,\phi \circ S^{-1}}
> $
>
> In addition, define the reflection of a distribution about the origin by
> $
> \anglesn{\td F, \phi} = \anglesn{F, \td \phi}
> $
# Approximations
> [!theorem]
>
> Let $T \in \cd'(U)$, then there exists [[Compactly Supported Distribution|compactly supported distributions]] $\seq{T_n} \subset \ce'(U)$ such that $T_n \to T$ in $\cd'(U)$.
>
> In particular, since compactly supported distributions can be approximated by $C_c^\infty$ functions, all distributions can be approximated by $C_c^\infty$ functions.
>
> *Proof*. Let $\seq{U_n}$ be an exhaustion of $U$ by precompact open sets. For each $n \in \nat$, let $\psi_n \in C_c^\infty(U)$ such that $\psi_n|_{\ol{U_n}} = 1$. Let $T_n = \psi_n T$, then for any $\phi \in \cd(U)$, there exists $N \in \nat$ such that $\supp{\phi} \subset U_N$ for all $n \ge N$. Therefore
> $
> \angles{T_n, \phi} = \angles{T, \psi_n \phi} = \angles{T, \phi}
> $
> for all $n \ge N$, and $T_n \to T$ in $\cd'(U)$.
[^1]: Crude estimation for being in the same cube.