> [!definition]
>
> Let $\ch$ be a [[Hilbert Space|Hilbert space]]. A [[Bounded Linear Operator|bounded linear operator]] $T \in L(\ch, \ch)$ is self-adjoint if $T = T^*$.
> [!theorem]
>
> Let $\cm \subset \ch$ be a closed $T$-invariant subspace, then $\cm^\perp$ is also a closed $T$-invariant subspace.
>
> *Proof*. Let $x \in \cm$ and $y \in \cm^\perp$, then
> $
> \angles{x, Ty} = \angles{Tx, y} = 0
> $
> [!theorem]
>
> Let $\lambda \in \complex$, then
> $
> \ol{(T - \lambda I)(\ch)} = \ker{(T^* - \lambda I)^\perp}
> $
> [!theorem]
>
> Let $\lambda = a + bi \in \complex$, then
> $
> \norm{(A - \lambda I)x}^2 \ge b^2 \norm{x}^2
> $
> Thus if $b \ne 0$, then
> 1. $(A - \lambda I)$ is injective.
> 2. $(A - \lambda I)(\ch)$ is closed (operator is "open" and satisfies the [[Method of Successive Approximations|method of successive approximations]]).
> 3. $\lambda$ is not in the continuous spectrum.
>
> *Proof*.
> $
> \begin{align*}
> \norm{(T - \lambda I)x}^2 &= \angles{(T - \lambda I)x, (T - \lambda I)x} \\
> &= \angles{(T - (a + bi) I)x, (T - (a + bi)I)x} \\
> &= \norm{(T - a I)x}^2 + b^2\norm{x}^2 + i\angles{(A - a)x, bx} - i\angles{bx, (A - a)x} \\
> &= \norm{(T - aI)x}^2 + b^2\norm{x}^2
> \end{align*}
> $
> If $b \ne 0$, then $\norm{(A - \lambda I)x}^2 \ge b^2\norm{x}^2$.
> [!theorem]
>
> $
> \sigma(T) \subset [-\norm{T}, \norm{T}]
> $
>
> *Proof*. Let $\lambda \in \sigma(T)$, then either $\lambda$ is in the [[Resolvent|resolvent]] or it is in the residual spectrum. Suppose that $(T - \lambda I)(\ch) \subsetneq \ch$, then $\ol \lambda$ is in the pure point spectrum because $T$ is self-adjoint. This implies that $\lambda \in \real$ and $\lambda \in \sigma_p(T) \subset [-\norm{T}, \norm{T}]$.