> [!definition]
>
> Let $\cx$ be a [[Normed Vector Space|normed space]]. An element of its [[Topological Dual|dual]] $\cx^*$ is known as a **(bounded) linear functional**.
> [!theorem]
>
> Let $\cx$ be a vector space over $\complex$.
> - If $f$ is a complex linear functional on $\cx$ and $u = \re{f}$, then $u$ is a real linear functional, and $f(x) = u(x) - iu(ix)$ for all $x \in \cx$.
> - If $u$ is a real linear functional on $\cx$ and $f: \cx \to \complex$ is defined by $f(x) = u(x) - iu(ix)$, then $f$ is complex linear.
> - If $\cx$ is normed, then $\norm{u} = \norm{f}$.
>
> *Proof*. For any $x, y \in \cx$, $\lambda \in \real$,
> $
> \begin{align*}
> u(\lambda x + y) &= \re{f(\lambda x + y)} \\
> &= \lambda\re{f( x)} + \re{f(y)} \\
> &= \lambda u(x) + u(y)
> \end{align*}
> $
> so $u$ is linear, and
> $
> \begin{align*}
> u(x) - iu(ix) &= \re{f(x)} - i\re{f(ix)} \\
> &= \re{f(x)} - i\re{if(x)} \\
> &= \re{f(x)} + \im{f(x)}
> \end{align*}
> $
> Now take,
> $
> f(ix) = u(ix) - iu(i^2x) = u(ix) + iu(x) = if(x)
> $
> and for any $\lambda \in \real$,
> $
> f(\lambda x) = u(\lambda x) - iu(i\lambda x) = \lambda u(x) - \lambda iu(ix) = \lambda f(x)
> $
> Therefore for any $a + bi \in \complex$,
> $
> \begin{align*}
> f((a + bi)x) &= f(ax) + f(bix) \\
> &= af(x) + bif(x) \\
> &= (a + bi)f(x)
> \end{align*}
> $
>
> Lastly, let $x \in \cx: \norm{x} = 1$, then
> $
> \begin{align*}
> \norm{f(x)} = |f(x)| &= \sqrt{\re{f(x)}^2 + \im{f(x)}^2} \\
> &\ge |\re{f}| = |u(x)| = \norm{u(x)}
> \end{align*}
> $
> and $\norm{f} \ge \norm{u}$. Let $\alpha = \ol{\sgn f(x)}$, then by rotating $x$ such that $f(x)$ is real,
> $
> \begin{align*}
> \abs{f(x)} &= \abs{\alpha} \cdot \abs{f(x)} \\
> &= \abs{\alpha f(x)} = \abs{\re{f(x)}} \\
> &= |f(\alpha x)| \\
> &= |u(\alpha x)| \\
> &\le \norm{u} \norm{\alpha x} = \norm{u}\norm{x}
> \end{align*}
> $
> therefore $\norm{f} = \norm{u}$.