> [!theorem]
>
> Let $(X, \cm, \mu)$ be a [[Measure Space|measure space]], $p \in (1, \infty)$, and $\seq{f_n} \subset L^p(X, \cm, \mu)$ and $f \in L^p$ such that
> 1. $M = \max\braks{\sup_{n \in \nat}\norm{f_n}_p, \norm{f}_p} < \infty$.
> 2. $f_n \to f$ [[Almost Everywhere|a.e.]]
>
> then $f_n \to f$ [[Weak Topology|weakly]].
>
> *Proof*. Identify $(L^p)^*$ with $L^q$[^1]. Let $g \in L^q$, then the measure $\abs{g}^qd\mu \ll \mu$. Hence for any $\eps > 0$, there exists $\delta > 0$ such that $\norm{g \cdot \one_E}_q^q < \eps$ for all $E \in \cm$ with $\mu(E) < \delta$. Let $A \subset X$ such that $\mu(A) < \infty$ and $\norm{g \cdot \one_A}_q^q < \eps$. By [[Egoroff's Theorem]], there exists $B \subset A$ such that $\mu(A \setminus B) < \delta$ and $f_n \to f$ [[Uniform Convergence|uniformly]] on $B$. Combining the two yields that $\norm{g \cdot \one_{X \setminus B}}_q^q < 2\eps$.
>
> In this case,
> $
> \begin{align*}
> \abs{\angles{f_n, g} - \angles{f, g}} &\le \angles{\abs{f_n - f}, g} \\
> &= \angles{\abs{f_n - f}, g \cdot \one_B} +\angles{\abs{f_n - f}, g \cdot \one_{X \setminus B}}
> \end{align*}
> $
> By uniform convergence, $\angles{\abs{f_n - f}, g \cdot \one_B} \to 0$. By absolute continuity,
> $
> \begin{align*}
> \angles{\abs{f_n - f}, g \cdot \one_{A \setminus B} + g\cdot \one_{X \setminus A}} &\le \norm{f_n - f}_p \cdot \norm{g \cdot \one_{X \setminus B}} _q \\
> &\le 2M \cdot (2\eps)^{1/q}
> \end{align*}
> $
> as $\eps$ was arbitrary, the limit must go to zero.
[^1]: [[Lp Representation Theorem]]