> [!theorem]
>
> Let $(X, \cm, \mu)$ be a [[Measure Space|measure space]] and $f$ be a [[Measurable Function|measurable function]]. Then
> $
> \norm{f}_\infty = \inf\bracs{a \ge 0: \mu(\bracs{x \in X: \abs{f(x)} > a}) = 0}
> $
> is the **essential supremum** of $f$, where the [[Supremum and Infimum|infimum]] is taken to be $\infty$ if the set is empty.
> [!theorem]
>
> Let $(X, \cm, \mu)$ be a measure space, then define
> $
> L^{\infty}(X, \cm, \mu) = \bracs{f: X \to \complex: \norm{f}_\infty < \infty}
> $
> [!theorem]
>
> Let $(X, \cm, \mu)$ be a measure space.
> - [[Hölder's Inequality]]: If $f, g$ are measurable functions on $X$, then $\norm{fg}_1 \le \norm{f}_1 \cdot \norm{g}_\infty$.
> - $\norm{ \cdot }_{\infty}$ is a [[Normed Vector Space|norm]] on $L^{\infty}$.
> - $L^{\infty}$ is a [[Banach Space|Banach space]].
> - The [[Simple Function|simple functions]] are [[Dense|dense]] in $L^{\infty}$.
>
> *Proof*.
>
> ### Hölder's Inequality
>
> If $f, g$ are measurable functions on $X$, then $\norm{fg}_1 \le \norm{f}_1 \cdot \norm{g}_\infty$.
>
> *Proof*.
> $
> \begin{align*}
> \norm{fg}_1 &= \int \abs{fg} \\
> &= \int \abs{f} \cdot \abs{g} \\
> &\le \int \abs{f} \cdot \norm{g}_\infty \\
> &= \norm{g}_\infty \int \abs{f} = \norm{g}_\infty \norm{f}_1
> \end{align*}
> $
>
> ### Norm
>
> $\norm{ \cdot }_{\infty}$ is a [[Normed Vector Space|norm]] on $L^{\infty}$.
>
> *Proof*. $\norm{f}_{\infty} = 0$ if and only if $f = 0$ [[Almost Everywhere|a.e.]],
> $
> \begin{align*}
> \norm{\lambda f}_\infty &= \norm{f}_\infty = \inf\bracs{a \ge 0: \mu(\bracs{x \in X: \abs{\lambda f(x)} > a}) = 0} \\
> &= \inf\bracs{a \ge 0: \mu(\bracs{x \in X: \abs{\lambda}\abs{ f(x)} > a}) = 0} \\
> &= \inf\bracs{\abs{\lambda}a \ge 0: \mu(\bracs{x \in X: \abs{\lambda}\abs{ f(x)} > \abs{\lambda}a}) = 0} \\
> &= \abs{\lambda}\inf\bracs{a \ge 0: \mu(\bracs{x \in X: \abs{ f(x)} > a}) = 0} \\
> &= \abs{\lambda} \cdot \norm{f}_\infty
> \end{align*}
> $
> Lastly, since $\abs{f + g} \le \norm{f}_\infty + \norm{g}_\infty$ a.e., $\norm{f + g}_\infty \le \norm{f}_\infty + \norm{g}_\infty$.
>
> ### Completeness
>
> Let $\seq{f_n} \subset L^{\infty}$ be a [[Sequence|sequence]] of functions such that $\sum_{n \in \nat}\norm{f_n}_\infty < \infty$, then $\sum_{n = 1}^{\infty}f_n \in L^{\infty}$.
>
> *Proof*. Since
> $
> \abs{\sum_{n = 1}^{\infty}f_n(x)} \le \sum_{n = 1}^{\infty}\abs{f_n(x)} \le \sum_{n = 1}^{\infty}\norm{f}_\infty \quad \text{a.e.}
> $
> we have $\norm{\sum_{n = 1}^{\infty}f_n}_{\infty} < \infty$.
>
>
> ### Simple Functions
>
> The simple functions are dense in $L^{\infty}$.
>
> *Proof*. Let $f \in L^\infty$, then $f$ is bounded by a constant a.e., therefore there exists a sequence of simple functions converging to $f$ a.e. uniformly.