> [!theorem]
>
> Let $p \in [1, \infty]$, and $K$ be a [[Lebesgue Measurable Function|Lebesgue measurable]] function on $(0, \infty)^2$ such that
> 1. $K(\lambda x, \lambda y) = \lambda^{-1}K(x, y)$ for all $\lambda > 0$.
> 2. $\int_0^\infty x^{1/p}\abs{K(x, 1)}dx = C < \infty$.
>
> Let $q$ be the [[Hölder's Inequality|Hölder conjugate]] to $p$. For $f \in L^p$ and $g \in L^q$, define
> $
> Tf(t) = \int_0^\infty K(x, y)f(x)dx \quad Sg(x) = \int_0^\infty K(x, y)g(y)dy
> $
> then $Tf$ and $Sg$ are defined [[Almost Everywhere|a.e.]], with $\norm{Tf}_p \le C\norm{f}_p$, and $\norm{Sg}_q \le C\norm{g}_q$.
>
> *Proof*. Let $z = x/y$, then
> $
> \begin{align*}
> \int \abs{K(x, y)f(x)}dx = y\int \abs{K(yz, y)f(yz)}dz = \int\abs{K(z, 1)f(zy)}dz
> \end{align*}
> $
> where $f_z(u) = f(zy)$. Since
> $
> \norm{f_z}_p = \braks{\int \abs{f(yz)}^pdy}^{1/p} = \braks{z^{-1}\int \abs{f(yz)}^pdy}^{1/p} = z^{-1/p}\norm{f}_p
> $
> By [[Minkowski's Inequality]],
> $
> \norm{Tf}_p \le \int \abs{K(z, 1)}\norm{f_z}_pdz = \norm{f}_p\int\abs{K(z, 1)}z^{-1/p}dz = C\norm{f}_p
> $
> On the other hand, if $u = 1/y$, then
> $
> \begin{align*}
> \int \abs{K(1, y)}y^{-1/q}dy &= \int \abs{K(y^{-1}, 1)}y^{-1-(1/q)}dy \\
> &= \int \abs{K(u, 1)}y^{-1/p}dy
> \end{align*}
> $
> so $Sg$ works out as well.