> [!theorem]
>
> If $\mu$ is finite and $0 < p < q \le \infty$, then $L^p \supset L^q$ and
> $
> \norm{f}_p \le \norm{f}_q \cdot \mu(X)^{1/p- 1/q}
> $
>
> *Proof*. If $q = \infty$, then we get the result directly. Otherwise, by [[Hölder's Inequality]] with $q/p$ and $q/(q - p)$,
> $
> \begin{align*}
> \norm{f}_p^p = \int \abs{f}^p &= \int \abs{f}^p \cdot 1 \\
> &\le \norm{\abs{f}^p}_{q/p} \cdot \norm{1}_{q/(q - p)} \\
> &= \norm{f}_q^{p} \cdot \mu(X)^{(q - p)/q}
> \end{align*}
> $