> [!definition]
>
> Let $(X, \cm, \mu)$ be a [[Measure Space|measure space]] and $f \in L^1(\mu)$, then denote
> $
> \mu \cdot f = \angles{\mu, f} = \int fd\mu
> $
> If $p > 0$, define the operator
> $
> P_k: \real^+ \to \real \quad x \mapsto x^k
> $
> and its inverse
> $
> P_{k}^{-1} = P_{1/k}: \real^+ \to \real \quad x\mapsto x^{1/k}
> $
> Let
> $
> \Pi_{j}: \real^n \to \real \quad x \mapsto \prod_{j = 1}^n x_j
> $
> Write $\Pi_{j \ne k}$ to exclude the $k$-th index from the product. Note that this product commutes with the power operators.
> [!theorem] [[Hölder's Inequality]]
>
> Let $(X, \cm, \mu)$ be a measure spaces. Let $\seqf{f_j} \in L^n \cap L^+$, and $r = n$, then
> $
> (\mu \circ \Pi_j) \cdot f_j \le (P_{r}^{-1} \circ \Pi_j \circ \mu \circ P_r) \cdot f_j
> $
> [!theorem]
>
> Let $\seqf{(X_j, \cm_j, \mu_j)}$ be a family of $\sigma$-finite measure spaces, and let $\nu_j = \prod_{k = 1}^j \nu_k$. Let $r = n - 1$, and $f, g \in (L^1 \cap L^+)(\nu_n)$ such that
> $
> \abs{f}^n \le \prod_{j = 1}^n \angles{\mu_j, \abs{g}} = \braks{\Pi_j \circ \mu_j} \cdot \abs{g}
> $
> [[Almost Everywhere|a.e.]], then $\norm{f}_{n/r} \le \norm{g}_1$.
>
> *Proof*. We claim that for each $1 \le k < n$,
> $
> \angles{\nu_k, \abs{f}^{n/r}} \le (P_{r}^{-1} \circ \Pi_j \circ \eta_{k, j}) \cdot \abs{g} \quad
> \eta_{k, j} = \begin{cases}
> \nu_k & 1 \le j \le k \\
> \nu_k \times \mu_j & k < j \le n
> \end{cases}
> $
> If $k = 1$, then by assumption
> $
> \begin{align*}
> \abs{f}^n &\le \braks{\Pi_j \circ \mu_j} \cdot \abs{g}\\
> \angles{\nu_1, \abs{f}^{n/r}} = \angles{\mu_1, \abs{f}^{n/r}} &\le (\mu_1 \circ P_{r}^{-1} \circ \Pi_j \circ \mu_{j}) \cdot \abs{g}
> \end{align*}
> $
> Since $\eta_{1, 1} = \mu_1$,
> $
> \angles{\mu_1, \abs{f}^{n/r}} \le (P_r^{-1} \circ \eta_{1, 1} \cdot \abs{g}) \cdot \braks{(\mu_1 \circ P_r^{-1} \circ \Pi_{j \ne 1} \circ \mu_{j}) \cdot \abs{g}}
> $
> As $(n - 1)/r = 1$, applying [[Hölder's Inequality]] yields,
> $
> \begin{align*}
> (\mu_1 \circ \Pi_{j \ne 1}) \cdot (P_r^{-1} \circ \mu_{j} \cdot \abs{g}) &\le
> (P_r^{-1} \circ \Pi_{j \ne 1} \circ \mu_1 \circ P_r) \cdot (P_r^{-1} \circ \mu_{j} \cdot \abs{g}) \\
> &= (P_r^{-1} \circ \Pi_{j \ne 1} \circ \mu_1 \circ \mu_{j}) \cdot \abs{g} \\
> &= (P_r^{-1} \circ \Pi_{j \ne 1} \circ \eta_{1, j}) \cdot \abs{g}
> \end{align*}
> $
> Combining with the prior equation gives
> $
> \angles{\nu_1, \abs{f}^{n/r}} \le (P_r^{-1} \circ \Pi_j \circ \eta_{1, j}) \cdot \abs{g}
> $
> Now suppose that the proposition holds for $k$. By [[Fubini-Tonelli Theorem|Tonelli's Theorem]],
> $
> \angles{\nu_{k + 1}, \abs{f}^{n/r}} = \angles{\mu_{k + 1}, \angles{\nu_{k + 1}, \abs{f}^{n/r}}} \le \mu_{k + 1} \circ (P_{r}^{-1} \circ \Pi_j \circ \eta_{k, j}) \cdot \abs{g}
> $
> Since $\eta_{k + 1, k + 1} = \eta_{k, k + 1}$,
> $
> \angles{\nu_{k + 1}, \abs{f}^{n/r}} \le (P^{-1}_r \circ \eta_{k + 1, k + 1} \cdot \abs{g}) \cdot \braks{(\mu_{k + 1} \circ P_r^{-1} \circ \Pi_{j \ne k + 1} \circ \eta_{k, j}) \cdot \abs{g}}
> $
> As $(n - 1)/r = 1$, applying Hölder's inequality yields
> $
> \begin{align*}
> &(\mu_{k + 1} \circ \Pi_{j \ne k + 1}) \cdot (P_r^{-1} \circ \mu_{j}) \cdot \abs{g} \\
> &\le (P_{r}^{-1} \circ \Pi_{j \ne k + 1} \circ \mu_{k + 1} \circ P_{r}) \circ (P_{r}^{-1} \circ \mu_j \cdot \abs{g}) \\
> &= (P_{r}^{-1} \circ \Pi_{j \ne k + 1} \circ \mu_{k + 1} \circ \eta_{k, j} \cdot \abs{g}) \\
> &= (P_{r}^{-1} \circ \Pi_{j \ne k + 1} \circ \eta_{k + 1, j} \cdot \abs{g})
> \end{align*}
> $
>
> Combining the equations gives
> $
> \angles{\nu_{k + 1}, \abs{f}^{n/r}} \le (P_r^{-1} \circ \Pi_j \circ \eta_{k + 1, j}) \cdot \abs{g}
> $
> By induction, the proposition holds for $k = n$. In which case, $\eta_{n, j} = \nu_n$ for all $n$, so
> $
> \begin{align*}
> \angles{\nu_n, \abs{f}^{n/r}} &\le (P_r^{-1} \circ \Pi_j \circ \nu_n) \cdot \abs{g} \\
> \norm{f}_{n/r}^{n/r}&= \norm{g}_1^{n/r}
> \end{align*}
> $