> [!theorem]
>
> Let $(\Omega, \cf, \bp)$ be a [[Measure Space|measure space]], $f: \real \to \real$ be a [[Convex Function|convex function]], and $g \in L^1$ be [[Integrable Function|integrable]], then
> $
> \int f \circ g \ge f \braks{\int g}
> $
>
> ### Second Derivatives
>
> Let $x \in \real$, then
> $
> \frac{f(x + h) - f(x)}{h} \quad \frac{f(x - h)- f(x)}{h}
> $
> are non-decreasing for $h > 0$. Moreover,
> $
> \frac{f(x + h) - f(x)}{h} \ge \frac{f(x) - f(x - h)}{h}
> $
> *Proof*. Let $p \in [0, 1]$, then
> $
> f(x + ph) \le (1 - p)f(x) + pf(x + h)
> $
> by convexity. In which case,
> $
> \begin{align*}
> f(x + ph) &\le (1 - p)f(x) + pf(x + h) \\
> f(x + ph) - f(x) &\le p(f(x + h) - f(x))
> \end{align*}
> $
> so
> $
> \frac{f(x + ph) - f(x)}{ph} \le \frac{f(x + h) - f(x)}{h}
> $
> On the other hand,
> $
> \begin{align*}
> f(x - ph) &\le (1 - p)f(x) + pf(x - h) \\
> f(x - ph) - f(x) &\le p(f(x - h) - f(x)) \\
> \frac{f(x - ph) - f(x)}{ph} &\le \frac{f(x - h) - f(x)}{h}
> \end{align*}
> $
> and
> $
> f(x) - f(x - h) \le f(x + h) - f(x)
> $
> by convexity.
>
> ### Tangents
>
> Define
> $
> \begin{align*}
> f'_+(x) &= \lim_{h \downto 0}\frac{f(x + h) - f(x)}{h} \\
> f'_-(x) &= \lim_{h \upto 0}\frac{f(x) - f(x - h)}{h}
> \end{align*}
> $
> and let $c = \int g$, $L(x) = f(c) + a(x - c)$. where $a \in [f'_-(x), f_+'(x)]$. By convexity, $L \le f$. So
> $
> \begin{align*}
> \int f \circ g &\le \int L \circ g \\
> &= \int \braks{f(c) + a(g - c)} \\
> &=f(c) + a\int\braks{g - \int g} \\
> &= f\braks{\int g}
> \end{align*}
> $