> [!theorem]
>
> Let $p, q \in (1, \infty)$ be [[Hölder's Inequality|Hölder conjugates]], then for any $a, b > 0$,
> $
> ab \le \frac{a^p}{p} + \frac{b^q}{q}
> $
> *Proof*. Since the mapping $x \mapsto e^x$ is convex,
> $
> \begin{align*}
> ab &= e^{\ln(a) + \ln(b)} = e^{\frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)} \\
> &\le \frac{1}{p}e^{\ln(a^p)} + \frac{1}{q}e^{\ln(b^q)} = \frac{a^p}{p} + \frac{b^q}{q}
> \end{align*}
> $
> [!theorem]
>
> If $f \in L^1$ and [$g \in L^p$](Lp%20Space), then [$f * g$](Convolution%20of%20Functions.md) exists [[Almost Everywhere|a.e.]], with $f * g \in L^p$, and $\norm{f * g}_p \le \norm{f}_1 \cdot \norm{g}_p$.
>
> *Proof*. Using [[Minkowski's Inequality|Minkowski's inequality for integrals]],
> $
> \begin{align*}
> \norm{f * g}_p &= \braks{\int \paren{\int f(y)g(x - y)dy}^{p}dx}^{1/p} \\
> &\le \int \paren{\int [f(y)g(x - y)]^{p}dx}^{1/p}dy \\
> &= \int f(y)\norm{g}_pdy = \norm{f}_1 \cdot \norm{g}_p
> \end{align*}
> $
> [!theorem]
>
> Let $p \ge 1$, then there exists $C_p \ge 0$ such that
> $
> \abs{a + b}^p \le C_p(\abs{a}^p + \abs{b}^p)
> $
> for all $a, b \in \real$.
>
> *Proof*. By convexity of $x \mapsto \abs{x}^p$,
> $
> \begin{align*}
> \frac{1}{2^p}\abs{a + b}^p &= \abs{\frac{a + b}{2}}^p \le \frac{\abs{a}^p + \abs{b}^p}{2} \\
> \abs{a + b}^p &\le 2^{p - 1}(\abs{a}^p + \abs{b}^p)
> \end{align*}
> $