Let $L$ be a [[Second Order Elliptic Operator|second order elliptic operator]] in divergence form
$
Lu = -\div{ADu} + \anglesn{b, Du}_{\real^d} + cu
$
where $A \in C^1(U; \real^{d \times d})$, $b \in L^\infty(U; \real^d)$, $c \in L^\infty(U)$, and $f \in L^2(U)$. Let $u \in H^1(U)$ be a [[Weak Solution of Second Order Linear PDE|weak solution]] to the equation $Lu = f$, then $u \in H^2_{\text{loc}}(U)$ where for each $V \subset \subset U$, there exists $C_{L, V, U} \ge 0$ such that
$
\norm{u}_{H^2(V)} \le C_{L, V, U}(\norm{f}_{L^2(U)} + \norm{u}_{L^2(U)})
$
*Proof*. Let
$
\td f = f - \anglesn{b, Du}_{\real^d} - cu
$
then since $u \in H^1(U)$ is a weak solution, for any $\phi \in H_0^1(U)$,
$
\anglesn{ADu, D\phi}_{L^2(U; \real^d)} = \anglesn{\td f, \phi}_{L^2(U)}
$
Let $W \subset \subset U$ such that $V \subset\subset W$, and $\eta \in C_c^\infty(U; [0, 1])$ with $\eta|_V = 1$, $\eta|_{U \setminus W} = 0$. Let $\delta > 0$ such that $V + he_\ell \subset W$ for all $1 \le \ell \le d$ and $h \in (-\delta, \delta)$.
Fix $1 \le \ell \le d$, $h \in (-\delta, \delta)$, and take $\phi = -D_\ell^{-h}(\eta^2D_\ell^h u)$. Using integration by parts and the product rule for difference quotients,
$
\begin{align*}
\anglesn{ADu, D\phi}_{L^2(U; \real^d)} &= -\anglesn{ADu, D(D_\ell^{-h}(\eta^2D_\ell^hu))}_{L^2(U; \real^d)} \\
&= -\anglesn{ADu, D_\ell^{-h}(D(\eta^2D_\ell^hu))}_{L^2(U; \real^d)} \\
&= \anglesn{D_\ell^h(ADu), D(\eta^2D_\ell^hu)}_{L^2(U; \real^d)} \\
&= \anglesn{(\tau_{-he_j}A)D_\ell^h(Du), D(\eta^2D_\ell^hu)}_{L^2(U; \real^d)} \\
&+ \anglesn{(D_\ell^hA)Du, D(\eta^2D_\ell^hu)}_{L^2(U; \real^d)}
\end{align*}
$
By further expanding
$
\begin{align*}
D(\eta^2D_\ell^hu) &= D\eta^2 \cdot D_\ell^hu + \eta^2D_\ell^hDu \\
&= 2\eta \cdot D\eta \cdot D_\ell^hu + \eta^2D_\ell^hDu
\end{align*}
$
This allows decomposing $\anglesn{ADu, D\phi}_{L^2(U; \real^d)} = S + R$, where
$
\begin{align*}
S &= \anglesn{(\tau_{-he_j}A)D_\ell^h(Du), \eta^2D_\ell^hDu}_{L^2(U; \real^d)} \\
R &= 2\anglesn{(\tau_{-he_j}A)D_\ell^h(Du), \eta \cdot D\eta \cdot D_\ell^hu}_{L^2(U; \real^d)}\\
&+ \anglesn{(D_\ell^hA)Du, \eta^2D_\ell^hDu }_{L^2(U; \real^d)} \\
&+ \anglesn{(D_\ell^hA)Du,\eta \cdot D\eta \cdot D_\ell^hu}_{L^2(U; \real^d)}
\end{align*}
$
Let $\theta > 0$ such that $A(x)(\xi) \ge \theta\abs{\xi}$ for all $\xi \in \real^d$ and $x \in U$, then since $\eta|_V = 1$, $S \ge \theta\normn{\eta D_\ell^hDu}_{L^2(V; \real^d)}^2$.
To bound $R$ from above, by assumption on $h$,
$
\begin{align*}
&|{2\anglesn{(\tau_{-he_j}A)D_\ell^h(Du), \eta \cdot D\eta \cdot D_\ell^hu}_{L^2(U; \real^d)}}| \\
&\le 2\norm{A}_{L^\infty(W; \real^{d \times d})}\norm{D\eta}_{L^\infty(W; \real^d)} \cdot \normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}\normn{D_\ell^hu}_{L^2(W)} \\
&\le 4\norm{A}_{L^\infty(W; \real^{d \times d})}\norm{D\eta}_{L^\infty(W; \real^d)} \cdot \normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}\normn{Du}_{L^2(U; \real^d)} \\
&\le C_{A, \eta} \normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}\normn{Du}_{L^2(U; \real^d)}
\end{align*}
$
For the last two terms, since $A \in C^1(U; \real^{d \times d})$ and $W \subset \subset U$, $\norm{DA}_{L^\infty(W; \real^{(d \times d) \times d})} < \infty$. Thus
$
\begin{align*}
&|{\anglesn{(D_\ell^hA)Du, \eta^2D_\ell^hDu }_{L^2(U; \real^d)}} + {\anglesn{(D_\ell^hA)Du,\eta \cdot D\eta \cdot D_\ell^hu}_{L^2(U; \real^d)}}| \\
&\le \norm{DA}_{L^\infty(W; \real^{(d \times d) \times d})}\norm{Du}_{L^2(W; \real^{d})}{\normn{\eta D_\ell^hDu}_{L^2(W; \real^{d \times d})}} \\
&+ \norm{DA}_{L^\infty(W; \real^{(d \times d) \times d})}\norm{Du}_{L^2(W; \real^d)}\norm{D\eta}_{L^\infty(W; \real^d)}\normn{D^h_\ell u}_{L^2(W)}\\
&\le \norm{DA}_{L^\infty(W; \real^{(d \times d) \times d})}\norm{Du}_{L^2(W; \real^{d})}{\normn{\eta D_\ell^hDu}_{L^2(W; \real^{d \times d})}} \\
&+ 2\norm{DA}_{L^\infty(W; \real^{(d \times d) \times d})}\norm{D\eta}_{L^\infty(W; \real^d)}\norm{Du}_{L^2(U; \real^d)}^2 \\
&\le C_{A, \eta}({\norm{Du}_{L^2(W; \real^d)}{\normn{\eta D_\ell^hDu}_{L^2(W; \real^{d \times d})}} + \norm{Du}_{L^2(U; \real^d)}^2})
\end{align*}
$
Combing these,
$
\abs{R} \le C_{A, \eta}\normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}\norm{Du}_{L^2(W; \real^d)} +C_{A, \eta}\norm{Du}_{L^2(U; \real^d)}^2
$
By [[Young's Inequality]] with $\eps = \theta/2$,
$
\abs{R} \le \frac{\theta}{2}\normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}^2 + \paren{\frac{C_{A, \eta}^2}{2\theta} + C_{A, \eta}}\norm{Du}_{L^2(W; \real^d)}^2
$
Thus
$
\abs{\anglesn{ADu, D\phi}_{L^2(U; \real^d)}} \ge \frac{\theta}{2}\normn{\eta D_\ell^hDu}_{L^2(W; \real^d)} - C_{A, \eta, \theta}\norm{Du}_{L^2(W; \real^d)}^2
$
On the flip side,
$
\begin{align*}
\abs{\anglesn{\td f, \phi}_{L^2(U)}} &\le \braks{\norm{f}_{L^2(U)} + \norm{b}_{L^\infty(U; \real^d)}\norm{Du}_{L^2(U; \real^d)} + \norm{c}_{L^\infty(U)}\norm{u}_{L^2(U)}}\norm{\phi}_{L^2(U)} \\
&\le C_{b, c}\braks{\norm{f}_{L^2(U)} + \norm{Du}_{L^2(U; \real^d)} + \norm{u}_{L^2(U)}}\norm{\phi}_{L^2(U)}
\end{align*}
$
where
$
\begin{align*}
\norm{\phi}_{L^2(U)} &\le 2\normn{D(\eta^2D_\ell^hu)}_{L^2(U; \real^d)} \\
&\le 4\norm{D\eta}_{L^\infty(U; \real^d)}\normn{D_\ell^hu}_{L^2(W;\real^d)} + \normn{D_\ell^hDu}_{L^2(W; \real^d)} \\
&\le C_{\eta}(\norm{Du}_{L^2(U; \real^d)} + \normn{\eta D_\ell^hDu}_{L^2(W; \real^d)})
\end{align*}
$
By Young's inequality with $\eps = \theta/4$,
$
\begin{align*}
\abs{\anglesn{\td f, \phi}_{L^2(U)}} &\le C_{b, c, \eta}\norm{Du}_{L^2(U; \real^d)}\braks{\norm{f}_{L^2(U)} + \norm{Du}_{L^2(U; \real^d)} + \norm{u}_{L^2(U)}} \\
&+ \frac{C_{b, c, \eta}^2}{\theta}\braks{\norm{f}_{L^2(U)} + \norm{Du}_{L^2(U; \real^d)} + \norm{u}_{L^2(U)}}^2\\
&+ \frac{\theta}{4}\normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}^2 \\
&\le C_{b, c, \eta, \theta}\braks{\norm{f}_{L^2(U)}^2 + \norm{Du}_{L^2(U; \real^d)}^2 + \norm{u}_{L^2(U)}^2}+ \frac{\theta}{4}\normn{\eta D_\ell^hDu}_{L^2(W; \real^d)}^2
\end{align*}
$
Combining with the estimate on $\anglesn{ADu, D\phi}_{L^2(U; \real^d)}$ yields that
$
\normn{D_\ell^hDu}_{L^2(W; \real^d)}^2 \le C_{A, b, c, \eta, \theta}\braks{\norm{f}_{L^2(U)}^2 + \norm{Du}_{L^2(U; \real^d)}^2 + \norm{u}_{L^2(U)}^2}
$