> [!theoremb] Gagliardo-Nirenberg-Sobolev Inequality
>
> Let $U \subset \real^d$ be a bounded and open such that $\partial U$ is of class $C^1$[^1], $1 \le p < d$, $p^*$ be its [[Sobolev Conjugate|Sobolev conjugate]], and $u \in W^{1, p}(U)$. Then, there exists $C_{p, d, U} \ge 0$ such that
> $
> \norm{u}_{p^*} \le C_{p, d, U}\norm{u}_{W^{1, p}(U)}
> $
> the $p^*$ norm is bounded by the [[Sobolev Space|Sobolev norm]], so $u \in L^{p^*}$.
# Proofs
> [!theorem] Gagliardo-Nirinberg-Sobolev, p = 1
>
> Let $p = 1$ and $p^* = d/(d - 1)$ be its [[Sobolev Conjugate|Sobolev conjugate]], then there exists $C \ge 0$ depending only on $p$ and $d$, such that
> $
> \norm{u}_{L^{p^*}(\real^d)} \le C\norm{Du}_{L^p(\real^d)}
> $
> for all $u \in C_c^1(\real^d)$, [$C^1$](Space%20of%20Continuously%20Differentiable%20Functions) with [[Compactly Supported|compact support]].
>
> *Proof*. Since $u$ is compactly supported, for any $x \in \real^d$ and $j \in [d]$,
> $
> \begin{align*}
> u(x) &= \int_{(-\infty, x_i]}\partial_i u dy_i \\
> \abs{u(x)} &\le \int \norm{Du} dx_j
> \end{align*}
> $
> If $d = 1$, then we are done. Otherwise
> $
> \abs{u(x)}^{d/(d-1)} \le \prod_{j \in [d]}\int \norm{Du}dx_j
> $
> This satisfies the condition of the [[Iterated Hölder's Inequality]]. Therefore
> $
> \norm{u}_{d/(d - 1)} \le \norm{Du}_1
> $
> [!theorem] Gagliardo-Nirenberg-Sobolev Inequality
>
> Let $p \in (1, n)$ and $p^* = pd/(d - p)$ be its [[Sobolev Conjugate|Sobolev conjugate]], then there exists $C \ge 0$ depending only on $p$ and $d$, such that
> $
> \norm{u}_{L^{p^*}(\real^d)} \le C\norm{Du}_{L^p(\real^d)}
> $
> for all $u \in C_c^1(\real^d)$, [$C^1$](Space%20of%20Continuously%20Differentiable%20Functions) with [[Compactly Supported|compact support]].
>
> *Proof*. Let $\gamma > 1$, then the mapping $x \mapsto \abs{x}^\gamma$ is differentiable with derivative $x^{\gamma - 1}$. Denote
> $
> L_p = P_p^{-1} \circ \mu \circ P_{p}
> $
> then for any $q \ge 1$,
> $
> L_q = P_{q/p}^{-1} \circ \underbrace{P_p^{-1} \circ \mu \circ P_p}_{L^p} \circ P_{q/p}
> $
>
> The chain rule allows applying the $p = 1$ case.
> $
> \begin{align*}
> L_{d/(d - 1)} \cdot (P_\gamma \cdot \abs{u}) &\le L_1 \cdot \norm{D\abs{u}^\gamma} = \gamma \angles{\abs{u}^{\gamma - 1}, \norm{Du}}
> \end{align*}
> $
> Let $q = p/(p - 1)$ be the Hölder conjugate of $p$, then by [[Hölder's Inequality]],
> $
> \angles{\abs{u}^{\gamma - 1}, \norm{Du}} \le (L_q \circ P_{\gamma - 1} \cdot \abs{u}) \cdot L_p(\norm{Du})
> $
> Let $\gamma$ such that $\gamma d/(d - 1) = (\gamma - 1)q$, then there exists $\gamma > 1$ where
> $
> \gamma = \frac{p(d - 1)}{d - p} \quad \frac{\gamma d}{d - 1} = \frac{dp}{d - p} = p^*
> $
> is the Sobolev conjugate of $p$. Since
> $
> \begin{align*}
> L_{d/(d - 1)} \circ P_\gamma &= P_{d/(d-1)}^{-1} \circ \mu \circ P_{d/(d - 1)} \circ P_{\gamma} \\
> &= P_\gamma \circ L_{\gamma d/(d - 1)} = P_\gamma \circ L_{p^*}
> \end{align*}
> $
> On the other hand,
> $
> \begin{align*}
> L_q \circ P_{\gamma - 1} &= L_{q}^{-1} \circ \mu \circ L_q \circ P_{\gamma - 1} \\
> &= P_{\gamma - 1} \circ L_{q(\gamma - 1)} = P_{\gamma - 1} \circ L_{p^*}
> \end{align*}
> $
> This yields
> $
> \begin{align*}
> (P_{\gamma} \circ L_{p^*}) \cdot \abs{u} &\le \gamma \braks{(P_{\gamma - 1} \circ L_{p^*}) \cdot \abs{u}} \cdot L_p(\norm{Du}) \\
> \norm{u}_{p^*} &\le C\norm{Du}_{p}
> \end{align*}
> $
> [!theorem]
>
> Let $U \subset \real^d$ be a bounded and open such that $\partial U$ is of class $C^1$[^1], $1 \le p < n$, $p^*$ be its [[Sobolev Conjugate|Sobolev conjugate]], and $u \in W^{1, p}(U)$. Then, there exists $C \ge 0$, depending only on $p, n$ and $U$, such that
> $
> \norm{u}_{p^*} \le C\norm{u}_{W^{1, p}(U)}
> $
> therefore $u \in L^{p^*}$.
>
> *Proof*. Since $\partial U \in C^1$, there exists a $C \ge 0$ that only depends on $p$ and $U$, an extension operator,
> $
> E: W^{1, p}(U) \to W^{1, p}(\real^d) \quad u \mapsto Eu = \ol{u}
> $
> such $\norm{E} \le C$ that $\ol{u} \in W^{1, p}(\real^d)$ of [[Compactly Supported|compact support]] and $\norm{E} \le C$. Let $\seq{u_m} \subset C_c^\infty(\real^n)$ such that $u_m \to \ol{u}$ in $W^{1, p}(\real^d)$, then by the Gagliardo-Nirenberg Sobolev inequality and passing over equivalent norms,
> $
> \norm{u_m - u_n}_{p^*} \le C \norm{Du_m - Du_n}_{L^p(\real^d)} \le C'\norm{u_m - u_n}_{W^{1, p}(U)}
> $
> As $\norm{u_m - u_n}_{W^{1, p}} \to 0$ as $m, n \to \infty$, $\seq{u_m}$ is a [[Cauchy Sequence|Cauchy sequence]] in $L^{p^*}$. This means that $\seq{u_m}$ is a Cauchy sequence in $L^p \cap L^{p^*}$ (with respect to the norm $L_p + L_{p^*}$). By completeness of $L^{p} \cap L^{p^*}$, there exists $v \in L^p \cap L^{p^*}$ such that $u_m \to v$ in $L^p \cap L^{p^*}$. As the inclusion is continuous, $u_m \to v$ in $L^p$ and in $L^{p^*}$, thus $v = \ol{u}$, and $u_m \to \ol{u}$ in $L^{p^*}$.
>
> By continuity of norms,
> $
> \norm{u}_{p^*} \le C' \norm{u}_{W^{1, p}}
> $
[^1]: See [[Differentiable Boundary]].