> [!theoremb] Theorem
>
> Let $d \in \nat$, $1 \le p < \infty$, $p^*$ be its [[Sobolev Conjugate|Sobolev conjugate]] and $\cf \subset W^{1, p}(\real^d)$ be a family of functions in the [[Sobolev Space|Sobolev space]] such that
> 1. $M = \sup_{f \in \cf}\norm{f}_{W^{1,p}(\real^d)}$.
> 2. There exists $K \subset \real^d$ [[Compactness|compact]] such that $\supp{f} \subset K$ for all $f \in \cf$.
>
> then $\cf$ is [[Totally Bounded|totally bounded]] in $L^q$ for every $q < p^*$. Moreover, for any bounded open set $U \subset \real^d$ with $\partial U \in C^1$, the inclusion
> $
> W^{1, p}(U) \to L^q(U)
> $
> is compact.
# Proof
Let $\cf \subset W^{1, p}(\real^d)$ be a family of functions satisfying the requirements of the theorem. There are no sufficiently nice subspaces of $W^{1, p}(\real^d)$ where the compactness result can be applied directly, so we will take families that approximate $\cf$. Let $\phi \in C_c^\infty(\real^d)$ be a [[Mollifier|mollifier]]. For each $t > 0$, define
$
\cf_t = \bracs{f * \phi_t: f \in \cf}
$
### The Compactness Lemma
These families must satisfy two conditions for the compactness to hold.
> [!theorem]
>
> Let $(X, d)$ be a [[Metric Space|metric space]] and $E \subset X$. Suppose that for every $R > 0$, there exists $E_R \subset X$ such that:
> 1. $E_R$ is totally bounded.
> 2. For any $x \in E$, there exists $y \in E_R$ such that $d(x, y) < R/2$.
>
> then $E$ is also totally bounded.
>
> *Proof*. Let $R > 0$, then there exists $\seqf{x_j} \subset X$ such that $E_R \subset \bigcup_{i = 1}^n B(x_j, R/2)$. Let $x \in E$, then there exists $y \in E_R$ such that $d(x, y) < R/2$, and $1 \le j \le n$ such that $d(x_j, y) < R/2$. Therefore $E \subset \bigcup_{i = 1}^n B(x_j, R)$. As such a finite covering holds for all $R > 0$, $E$ is totally bounded.
### Totally Bounded
> [!theorem]
>
> For each $t > 0$, $\cf_t$ is totally bounded.
>
> *Proof*. Since $\cf$ has a common [[Compactly Supported|compact support]], so does $\cf_t$. Using the [[Arzelà-Ascoli Theorem]], it's sufficient to show that $\cf_t$ is pointwise bounded and equicontinuous. Firstly,
> $
> \norm{f * \phi_t}_u \le \norm{\phi_t}_q\norm{f}_p \le \norm{\phi_t}_q \cdot M
> $
> for all $f \in \cf$, so $\cf_t$ is uniformly bounded. On the other hand, for any $x, y \in \real^d$,
> $
> \begin{align*}
> \abs{f * \phi_t(x) - f * \phi_t(y)} &\le \int_{\real^d}\abs{\phi_t(x - z) - \phi_t(y - z)} \cdot f(z)dz \\
> &\le \norm{\tau_{x - y}\phi_t - \phi_t}_q \cdot \norm{f}_p \\
> &\le \sup_{\abs{z} \le \abs{x - y}}\norm{\tau_z \phi_t - \phi_t}_q \cdot M
> \end{align*}
> $
> where $\sup_{\abs{z} \le \abs{x - y}}\norm{\tau_z \phi_t - \phi_t}_q \to 0$ as $\abs{x - y} \to 0$, so $\cf_t$ is uniformly equicontinuous.
### Distance
> [!theorem]
>
> Let $f \in W^{1, p}(\real^d)$ be of compact support, then
> $
> \norm{f * \phi_t - f}_1 \le t\norm{\phi}_1\norm{Df}_{L^1}
> $
> *Proof*. First suppose that $f \in C_c^\infty(\real^d)$ and let $x \in \real^d$, then
> $
> \begin{align*}
> \abs{f * \phi_t(x) - f(x)} &\le \int_{B(0, t)}\abs{\phi_t(y)}\abs{f(x - y) - f(x)}dy \\
> &\le t\int_{B(0, t)}\abs{\phi_t(z)}\int_{0}^1\abs{Df(x -sy)}dsdy \\
> \int_{\real^d}\abs{f * \phi_t(x) - f(x)}dx &\le t\int_{B(0, t)}\abs{\phi_t(z)}\int_{0}^1\abs{Df(x -sy)}dxdsdy \\
> &\le t\norm{Df}_1 \norm{\phi_t}_1
> \end{align*}
> $
>
> If $f$ is arbitrary, taking an approximating sequence yields the desired result.
> [!theorem]
>
> Let $f \in W^{1, p}(\real^d)$ be of compact support, then
> $
> \norm{f * \phi_t - f}_{q} \le C_{p, d}\norm{\phi}_1\norm{f}_{W^{1, p}} m(\supp{f})^{\lambda p/(p - 1)} \cdot t^{\lambda}
> $
> where
> $
> \lambda = \frac{1/q - 1/p^*}{1 - 1/p^*}
> $
> *Proof*. By $L^p$ [[Intermediate Interpolation of Lp Spaces|interpolation]],
> $
> \norm{f * \phi_t - f}_q \le \norm{f * \phi_t - f}_1^\lambda \cdot \norm{f * \phi_t - f}_{p^*}^{1 - \lambda}
> $
> By the [[Gagliardo-Nirenberg-Sobolev Inequality]] and [[Young's Inequality]],
> $
> \norm{f * \phi_t - f}_{p^*} \le C_{p, d}\norm{f * \phi_t - f}_{W^{1, p}} \le C_{p, d}\norm{\phi}_1 \norm{f}_{W^{1, p}}
> $
> By the inclusion of $L^p$ spaces on finite measure spaces,
> $
> \begin{align*}
> \norm{f * \phi_t - f}_q &\le (t\norm{\phi}_1\norm{Df}_{L^1})^{\lambda}(C_{p, d}\norm{\phi}_1 \norm{f}_{W^{1, p}})^{1 - \lambda} \\
> &= C_{p, d} \norm{\phi}_1 \cdot \norm{Df}_{L^1}^\lambda \norm{f}_{W^{1, p}}^{1 - \lambda} \cdot t^\lambda \\
> &\le C_{p, d}\norm{\phi}_1 \cdot m(\supp{f})^{\lambda p/(p-1)} \norm{f}_{W^{1, p}} \cdot t^\lambda
> \end{align*}
> $
### Conclusion
> [!theorem]
>
> $\cf$ is totally bounded in $L^q$.
>
> *Proof*. It's sufficient to verify condition $(2)$ of the compactness lemma. Since $\cf$ is bounded, we have that
> $
> \norm{f * \phi_t - f}_q \le C_{p, d}M\norm{\phi}_1 m(K)^{\lambda p/(p - 1)} \cdot t^\lambda
> $
> Condition $(2)$ for any $R > 0$ can be satisfied by $\cf_t$ for sufficiently small $t > 0$.