Let $d \in \nat$, $U \subset \real^d$ be a bounded [[Open Set|open]] set with $\partial U \in C^1$, $1 \le p < \infty$, $k \in \nat$, and let $W^{k, p}(U)$ be the [[Sobolev Space|Sobolev space]].
> [!theorem] Sobolev Embedding Theorem (I)
>
> Suppose that $k/d < 1/p$. Let $1 \le l \le k$ and $q_l \in \real$ such that
> $
> \frac{1}{q_l} = \frac{1}{p} - \frac{1}{d}
> $
> then the inclusion map $\iota: W^{k, p}(U) \to W^{k - l, q}(U)$ is [[Bounded Linear Map|bounded]] for all $1 \le q \le q_l$, and [[Compact Operator|compact]] for all $1 \le q < q_l$.
>
> Moreover, for arbitrary $1 \le p \le \infty$, the inclusion $W^{1, p}(U) \to L^p(U)$ is always compact.
>
> *Proof*. Suppose that $k/d < 1/p$. For any $f \in W^{k, p}(U)$, by the [[Gagliardo-Nirenberg-Sobolev Inequality]] applied to all $D^\alpha f$ with $\abs{\alpha} \le k - 1$, the inclusion $W^{k, p} \to W^{l - 1, p^*}$ is bounded. Since
> $
> \frac{1}{p^*} = \frac{1}{p} - \frac{1}{d} = \frac{1}{q_1}
> $
> we have that $q_j^* = q_{j+1}$. Applying this inductively yields the desired embedding. For $q < q_l$, the inclusion is compact by the [[Kondrachov Compactness Theorem]].
>
> Now suppose that $1 \le p \le \infty$ is arbitrary. If $p < d$, then $p^* > p$ and compactness follows from the Rellich-Kondrachov compactness theorem. If $p \ge d$, then the inclusion
> $
> \begin{CD}
> W^{1, p}(U) @>>> W^{1, q}(U) @>>> L^{q^*}(U)
> \end{CD}
> $
> is compact for all $1 \le q < d$. Since $q^* \to \infty$ as $q \upto d$, the above can be composed with inclusion into $L^p$ for $q$ sufficiently close to $d$. Therefore the inclusion $W^{1, p} \to L^p$ is compact.
> [!theorem] Sobolev Embedding Theorem (II)
>
> Suppose that $k/d > 1/p$. Let
> $
> \gamma \in \begin{cases}
> \left(0, 1 + \fl{\frac{d}{p}} - \frac{d}{p} \right] &\frac{d}{p} \not\in \integer \\
> (0, 1) & \frac{d}{p} \in \integer
> \end{cases}
> $
> then there exists a bounded linear map
> $
> I: W^{k, p}(U) \to C^{k - \fl{d/p} - 1, \gamma}(U)
> $
> into the [[Hölder Space|Hölder space]] such that $D^\alpha (If) = D^\alpha f$ [[Almost Everywhere|a.e.]] for all $\alpha$ with $\abs{\alpha} \le k - \fl{d/p} - 1$ and $f \in W^{k, p}(U)$.
>
> *Proof*. If $d/p < 1$, then by [[Morrey's Inequality]] on $D^\alpha f$ with $\abs{\alpha} \le k - 1$ yields a bounded linear map
> $
> I: W^{k, p}(U) \to C^{k - 1, 1 - d/p}(U)
> $
> satisfying the desired criteria.
>
> Suppose that $d/p \not\in \integer$, let
> $
> l = \fl{\frac{d}{p}} < \frac{d}{p} < k \quad \frac{l}{d} < \frac{1}{p}
> $
> then the inclusion
> $
> \iota: W^{k, p}(U) \to W^{k - l, pd/(d - pl)}(U)
> $
> is bounded by the Sobolev Embedding Theorem (I). Composing with $I$ from above yields
> $
> I: W^{k, p}(U) \to C^{k - \fl{d/p} - 1, 1 - d(d-pl)/(pd)}
> $
> where
> $
> \begin{align*}
> 1 - \frac{d(d - pl)}{pd} &= 1 - \frac{d(d - p\fl{d/p})}{pd} = \frac{p - d + p\fl{d/p}}{p} \\
> &= 1 - \frac{d}{p} + \fl{\frac{d}{p}}
> \end{align*}
> $
>
> Now suppose that $d/p \in \integer$. Let
> $
> l = \frac{d}{p} - 1 < \frac{d}{p} < k \quad \frac{l}{d} < \frac{1}{p}
> $
> then the inclusion
> $
> \iota: W^{k, p}(U) \to W^{k - l, pd/(d - pl)}(U) = W^{k - d/p, d}(U)
> $
> where
> $
> \frac{pd}{d - pl} = \frac{pd}{d - d + p} = d
> $
> Since $U$ has finite measure, the inclusion into $W^{k - d/p, q}(U)$ is bounded for all $1 \le q < d$. Composing with $I$ from above yields
> $
> I: W^{k, p}(U) \to C^{k - d/p - 1, 1 - d/q^*}(U)
> $
> Given that $q^* \to \infty$ as $q \to d$, the above inclusion is continuous for all exponents in $(0, 1)$.