> [!theorem]
>
> Let $U \subset \real^n$ be a bounded [[Open Set|open]] set, $f \in UC^1(U)$ be an [[Space of Uniformly Continuously Differentiable Functions|UC]] function, and $\varphi: \wh U \to U$ be a [$C^1$](Space%20of%20Continuously%20Differentiable%20Functions)-isomorphism where $\varphi, \varphi^{-1}$ are both $UC$. Then, there exists $C \ge 0$, independent of $f$, such that
> $
> \norm{f \circ \varphi}_{W^{1, p}(\wh U)} \le C\norm{f}_{W^{1, p}(\wh U)}
> $
> *Proof*. Firstly, over a change of variables,
> $
> \begin{align*}
> \int_{\wh U} \abs{f \circ \varphi}^p &= \int_U \abs{f}^p \cdot \abs{\det D\varphi} \\
> &\le \norm{\det D\varphi}_u \int \abs{f}^p \\
> \norm{f \circ \varphi}_p^p &\le \norm{\det D\varphi}_u \cdot \norm{f}_{W^{1, p}(U)}^p
> \end{align*}
> $
> On the other hand, $\abs{D(f \circ \varphi)(x)} = \abs{Df(\varphi(x)) \cdot D\varphi(x)}$, so
> $
> \begin{align*}
> \abs{D(f \circ \varphi)} &\le \abs{Df \circ \varphi} \cdot \norm{D\varphi}_u \\
> \int \abs{D(f \circ \varphi)}^p &\le \norm{D\varphi}_u^p \cdot \norm{\det D\varphi^{-1}}_u \cdot \norm{Df}_p^p
> \end{align*}
> $
> By passing over equivalent norms, there exists $C_n \ge 0$ such that $\norm{Df}_p \le \norm{f}_{W^{1, p}(U)}$. From here,
> $
> \norm{D(f \circ \varphi)}_p^p \le C_n \cdot \norm{D\varphi}_u^p \cdot \norm{\det D\varphi}_u \cdot \norm{f}_{W^{1, p}(U)}^p
> $
> Summing over all coordinates, we get that
> $
> \norm{f \circ \varphi}_{W^{1, p}}^p \le \braks{nC_n \cdot \norm{D\varphi}_u^p \cdot \norm{\det D\varphi}_u + \norm{\det D\varphi}_u} \cdot \norm{f}_{W^{1, p}(U)}
> $
> which is the desired bound.