> [!theoremb] Theorem
>
> Let $d \in \nat$, $s \in \real$, $k \in \nat$, $H^s(\real^d)$ be the [[Fractional Sobolev Space|Sobolev space]] and $C^k_0(\real^d)$ be the $k$-times [[Space of Continuously Differentiable Functions|continuously differentiable]] functions that [[Vanishes at Infinity|vanish at infinity]], then the following are equivalent:
> 1. $s > k + d/2$.
> 2. There exists a [[Linear Transformation|linear map]] $I: H^s \to C^k$ such that $If = f$ [[Almost Everywhere|a.e.]] for all $f \in H^s$.
> 3. There exists a [[Bounded Linear Map|bounded linear map]] $I: H^s \to C_0^k$ such that $If = f$ a.e. for all $f \in H^s$.
>
> Moreover, if $\gamma = s - k - d/2 \in (0, 1)$, then the inclusion $I: H^s \to C_0^{k, \gamma}$ into the [[Hölder Space|Hölder space]] is also bounded.
>
> *Proof*. $(1) \Rightarrow (2)$: If $s > d/2$, then $I$ exists and is bounded by applying the uniform bound and density of the [[Schwartz Space|Schwartz space]].
>
> $(2) \Rightarrow (3)$: Suppose that $I$ exists. Let $\seq{(f_n, If_n)} \subset \Gamma(I)$ be a [[Cauchy Sequence|Cauchy sequence]] in the graph of $I$. By [[Complete Metric Space|completeness]], there exists $f \in H^s$ and $g \in C_0^k$ such that $f_n \to f$ in $H^s$ and $If_n \to g$ in $C_0^k$. By $L^2$ and uniform limit, $f = g$ a.e., hence $If = g$. By the [[Closed Graph Theorem]], $I$ is bounded.
>
> $(3) \Rightarrow (1)$: By composition, $\partial^\alpha \delta \in (H^s)^* = H^{-s}$ for all $\alpha \in \nat_0^d$ with $\abs{\alpha} \le k$. Therefore $\xi^\alpha \in L^2(\mu_{-s})$, $M_k \in L^2(\mu_{-s})$, and $M_{k - s} \in L^2$, so $s > k + d/2$.
>
> If $\gamma = s - k - d/e \in (0, 1)$, then the Hölder bound yields the desired result.
# Uniform and Hölder Bound
> [!theorem]
>
> Suppose that $s > k + d/2$, then for any $f \in H^k$ and $\alpha \in \nat_0^d$,
> $
> \norm{D^\alpha f}_u \le \normn{\wh{D^\alpha f}}_{L^1} \le (2\pi)^\abs{\alpha}\norm{M_{k - s}}_{L^2} \cdot \norm{f}_{H^s}
> $
> with $D^\alpha f \in C_0$.
>
> *Proof*. By the [[Cauchy-Schwarz Inequality]],
> $
> \begin{align*}
> \int_{\real^d}\abs{\partial^\alpha f} &= \int_{\real^d}|M_\alpha \wh{f}| \le \int_{\real^d}M_k|\wh f| = \int_{\real^d}M_{k - s} \cdot M_s|\wh f| \\
> &\le \norm{M_{k - s}}_{L^2} \cdot \normn{M_s\wh f}_{L^2} = \norm{M_{k - s}}_{L^2} \cdot \norm{f}_{\ch^s}
> \end{align*}
> $
> where $D^\alpha f \in C_0$ comes from the Riemann-Lebesgue lemma.
> [!theorem]
>
> Suppose that $\gamma = s - d/2 \in (0, 1)$, then
> $
> \norm{\delta_x - \delta_y}_{\ch^{-s}} \le \abs{x - y}^\gamma \sqrt{\sigma(\partial B(0, 1))\braks{\frac{(2\pi)^2}{2 - 2\gamma} + \frac{2}{\gamma}}}
> $
> for any $x, y \in \real^d$.
>
> *Proof*. Firstly, $\wh \delta_x(\xi) = e^{-2\pi i \angles{x, \xi}}$, so
> $
> \norm{\delta_x - \delta_y}_{\ch^{-s}}^2 = \int_{\real^d}M_{-2s}(\xi)\braks{e^{-e\pi i \angles{x, \xi}} - e^{-2\pi i \angles{y, \xi}}}^2 d\xi
> $
> By the [[Mean Value Theorem|mean value theorem]],
> $
> \abs{e^{-e\pi i \angles{x, \xi}} - e^{-2\pi i \angles{y, \xi}}} \le \abs{2\pi \xi}\abs{x - y}
> $
> Let $r = 1/\abs{x - y}$, then
> $
> \begin{align*}
> &\int_{\bracs{\abs{\xi} \le r}}M_{-2s}(\xi)\braks{e^{-e\pi i \angles{x, \xi}} - e^{-2\pi i \angles{y, \xi}}}^2 d\xi \\
> &\le (2\pi)^2 \int_{\bracs{\abs{\xi} \le r}}\frac{\abs{\xi}^2\abs{x - y}^2}{(1 + \abs{\xi}^2)^s}d\xi \\
> &\le (2\pi)^2 \abs{x - y}^2\int_{\bracs{\abs{\xi} \le r}}\abs{\xi}^{2 - 2s}d\xi
> \end{align*}
> $
> where using [[Polar Integration]],
> $
> \begin{align*}
> \int_{\bracs{\abs{\xi} \le r}}\abs{\xi}^{2 - 2s}d\xi &= \sigma(\partial B(0, 1))\int_0^r t^{d + 1 - 2s}dt \\
> &= \sigma(\partial B(0, 1))\int_0^r t^{1 - 2\gamma}dt \\
> &\le \sigma(\partial B(0, 1))\frac{r^{2 - 2\gamma}}{2 - 2\gamma}
> \end{align*}
> $
> so
> $
> \int_{\bracs{\abs{\xi} \le r}}M_{-2s}(\xi)\braks{e^{-e\pi i \angles{x, \xi}} - e^{-2\pi i \angles{y, \xi}}}^2 d\xi \le (2\pi)^2\sigma(\partial B(0, 1))\frac{\abs{x - y}^{2\gamma}}{2 - 2\gamma}
> $
> On the other hand,
> $
> \begin{align*}
> &\int_{\bracs{\abs{\xi} > r}}M_{-2s}(\xi)\braks{e^{-e\pi i \angles{x, \xi}} - e^{-2\pi i \angles{y, \xi}}}^2 d\xi \\
> &\le 4\int_{\bracs{\abs{\xi} > r}}M_{-2s} = 4\int_{\bracs{\abs{\xi} > r}}\abs{\xi}^{2s}d\xi \\
> &\le 4\sigma(\partial B(0, 1))\int_r^\infty t^{d - 1 - 2s}dt\\
> &\le 4\sigma(\partial B(0, 1))\int_r^\infty t^{-2\gamma - 1}dt = 4\sigma(\partial B(0, 1))\frac{2\abs{x - y}^{2\gamma}}{\gamma}
> \end{align*}
> $
> Combining the two bounds yields
> $
> \norm{\delta_x - \delta_y}_{\ch^{-s}}^2 \le \abs{x - y}^{2\gamma}{\sigma(\partial B(0, 1))\braks{\frac{(2\pi)^2}{2 - 2\gamma} + \frac{2}{\gamma}}}
> $