Let $1 \le p < \infty$, $W^{1, p}(\mathbb H^{d})$ be the [[Sobolev Space|Sobolev space]], and $f \in W^{1, p}(\mathbb H^d)$ be a compactly supported function with [[Sobolev Trace Theorem|trace]] zero.
> [!theorem]
>
> There exists $C_p \ge 0$ such that
> $
> \int_{\real^{d - 1}} \abs{f(x', x_d)}^p dx' \le C_p x_d^{p - 1}\int_{[0, x_d]}\int_{\real^{d - 1}}\abs{Df(x', t)}^pdx'dt
> $
> for almost every $x_d > 0$.
>
> *Proof*. Let $\seq{f_n} \subset UC_c^1(\mathbb H^d)$ such that $f_n \to f$ in $W^{1, p}(\mathbb H^d)$, and $Tf_n = f_n|_{\partial \mathbb H^d} \to 0$ in $L^p(\partial \mathbb H^d)$. For any $x \in \mathbb R^d$, split $x = (x', x_d)$ with $x' \in \real^{d - 1}$ and $x_d \in \real$. By the [[Mean Value Theorem|mean value theorem]],
> $
> \abs{f_n(x', x_d)} \le \abs{f_n(x', 0)} + \int_{[0, x_d]}\abs{\partial^{x_d}f_n(x', t)}dt
> $
> Let $q$ be the Hölder conjugate of $p$. By [[Young's Inequality]] and [[Hölder's Inequality]],
> $
> \begin{align*}
> \abs{f_n(x', x_d)}^p &\le C_p\braks{\abs{f_n(x', 0)}^p + \paren{\int_{[0, x_d]}\abs{\partial^{x_d}f_n(x', t)}dt}^p} \\
> &\le C_p\braks{\abs{f_n(x', 0)}^p + \norm{\one_{[0, x_d]}}_q^p \cdot \norm{\one_{[0, x_d]} \cdot \partial^{x_d}f_n(x', \cdot)}_p^p}
> \end{align*}
> $
> where $\norm{\one_{[0, x_d]}}_q^p = x_d^{1/q \cdot 1/p} = x_d^{p - 1}$, so
> $
> \abs{f_n(x', x_d)}^p \le C_p \braks{\abs{f_n(x', 0)}^p + x_d^{p - 1}\int_{[0, x_d]}\abs{\partial^{x_d}f_n(x', t)}^pdt}
> $
> Since $f_n \to f$ in $W^{1, p}$,
> $
> \int_{\real}\int_{\real^{d - 1}}\abs{f_n(x', x_d) - f(x', x_d)}^pdx'dx_d \to 0
> $
> as $n \to \infty$, so $\int_{\real^{d - 1}} \abs{f_n(x', x_d) - f(x', x_d)}dx' \to 0$ in $L^1$, and admits a subsequence $\seq{n_k}$ such that $\int_{\real^{d - 1}}\abs{f_{n_k}(x', x_d)}dx' \to \int_{\real^{d - 1}}\abs{f(x', x_d)}dx'$ for almost every $x_d > 0$. On the other hand, $Tf_n \to 0$ in $L^p$, so sending $k \to \infty$ yields
> $
> \int_{\real^{d - 1}} \abs{f(x', x_d)}^p dx' \le C_p x_d^{p - 1}\int_{[0, x_d]}\int_{\real^{d - 1}}\abs{Df(x', t)}^pdx'dt
> $
> for almost every $x_d$.
> [!theorem]
>
> Let $W^{1, p}_c(\mathbb H^d)$ be the space of functions in $W^{1, p}(\mathbb H^{1, p})$, compactly supported in the *interior* of $\mathbb H^d$. For any $\eps > 0$, there exists $g \in W_c^{1, p}(\mathbb H^d)$ such that $\norm{f - g}_{W^{1, p}}j < \eps$.
>
> In other words, $W_c^{1, p}(\mathbb H^d)$ is [[Dense|dense]] in the kernel of the trace operator. In particular, since $C_c^\infty((\mathbb H^d)^o)$ is dense in $W_c^{1, p}$, $\ker(T) \subset W^{1, p}_0(\mathbb H^d)$.
>
> *Proof*. Let $\zeta \in C_c^\infty(\mathbb H, [0, 1])$ be a [[Smooth Bump Function|smooth bump function]] such that $\zeta|_{[0, 1]} = 1$ and $\supp{\zeta} \subset [0, 2]$. Identify
> $
> \zeta: \mathbb H^n \to \real \quad (x', x_d) \mapsto \zeta(x_d)
> $
> Let $t > 0$, $\zeta_t(x) = \zeta(tx)$, $f_t = f \cdot (1 - \zeta_t)$, then $f_t \in W_c^{1, p}(\mathbb H^d)$ with
> $
> \norm{f_t - f}_p \le \norm{\one_{\real^{d - 1} \times [0, 2/t]} \cdot f}_p \to 0
> $
> as $t \to \infty$. On the other hand,
> $
> \begin{align*}
> \partial^{x_d}f_t &= \partial^{x_d} f \cdot(1 - \zeta_t) - tf(\partial^{x_n}\zeta)_t \\
> \partial^{x'}f_t &= \partial^{x'} f\cdot (1 - \zeta_t)
> \end{align*}
> $
> where $(\partial^{x_n}\zeta)_t(x) = (\partial^{x_n}\zeta)(tx)$. Passing through equivalent norms,
> $
> \norm{Df_t - Df}_p \le C\braks{\norm{\partial^{x_d}(f_t - f)}_p + \norm{\partial^{x'}(f_t - f)}_p}
> $
> with
> $
> \begin{align*}
> \norm{\partial^{x'}(f_t - f)}_p &\le \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot \partial^{x'}f}_p\\
> \norm{\partial^{x_n}(f_t - f)}_p &\le \norm{\zeta_t \partial^{x_d} f}_p + \norm{tf \partial^{x_n}\zeta}_p \\
> &\le \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot \partial^{x_d}f}_p + \norm{\partial^{x_d}\zeta}_u \cdot \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot tf}_p
> \end{align*}
> $
> where $\normn{\one_{\bracs{x_d \in [0, 2/t]}} \cdot \partial^{x'}f}_p \to 0$ as $t \to \infty$. On the other hand, by the previous theorem,
> $
> \int_{\real^{d - 1}}\abs{f(x', x_d)}^p dx' \le C_p x_d^{p - 1}\int_{[0, x_d]}\int_{\real^{d - 1}}\abs{Df(x', s)}^pdx'ds
> $
> Integrating on the last variable gives
> $
> \begin{align*}
> \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot f}_p^p &\le C_p\int_{[0, 2/t]} x_d^{p - 1}\int_{[0, x_d]}\int_{\real^{d - 1}}\abs{Df(x', s)}^pdx'dsdx_d\\
> &\le C_p\int_{[0, 2/t]} x_d^{p - 1}\int_{[0, 2/t]}\int_{\real^{d - 1}}\abs{Df(x', s)}^pdx'dsdx_d\\
> &\le C_p\braks{\int_{[0, 2/t]} x_d^{p - 1}dx_d} \cdot \braks{\int_{[0, 2/t]}\int_{\real^{d - 1}}\abs{Df(x', s)}^pdx'ds}\\
> &\le C_p x_d^p \cdot \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot Df}_p^p \\
> \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot tf}_p&\le C_p^{1/p} \norm{\one_{\bracs{x_d \in [0, 2/t]}} \cdot Df}_p
> \end{align*}
> $
> which goes to $0$ as $t \to \infty$ as well.