> [!theorem]
>
> Let $X_0, X_1 \cdots X_n$ be a family of [[Random Variable|random variables]]. The [[Joint Entropy|joint entropy]]
> $
> H(X_0, X_1, \cdots X_n) = H(X_0) + \sum_{i = 1}^{n}H(X_i|X_0, X_1, \cdots, X_{i - 1})
> $
>
> *Proof*. When $n = 1$, $H(X_0, X_1) = H(X_0) + H(X_1|X_0)$. Suppose that this holds for $n$, then
> $
> \begin{align*}
> H(X_0, \cdots, X_{n + 1}) &= -\sum_{i_*}p(i_0, i_1, \cdots, i_{n + 1})\log_2(p(i_0, i_1, \cdots, i_{n + 1})) \\
> &= -\sum_{i_*}p(i_0, i_1, \cdots, i_{n + 1})\log_2(P(X_{n + 1} = i_{n + 1}|\cdots)))\\
> &-\sum_{i_*}p(i_0, i_1, \cdots, i_{n + 1})\log_2(p(i_0, i_1, \cdots, i_{n})) \\
> &= H(X_0, \cdots, X_{n}) + H(X_{n + 1}|X_0,\cdots, X_n)
> \end{align*}
> $
> By [[Axiom of Induction|induction]], this holds for all $n \in \nat$.