> [!definition]
>
> Let $R$ be a [[Ring|ring]] and $E$ and $F$ be $R$-[[Module|modules]]. A [[Multilinear Map|multilinear map]] $\lambda: E^k \to F$ is **alternating** if the following equivalent conditions are satisfied:
> - $\lambda \circ \sigma = \sgn(\sigma) \cdot \lambda$ for any $\sigma \in S_k$.
> - For any $v \in E^k$, if there exists $(i, j)$ such that $i \ne j$ and $v_i = v_j$, $\lambda v = 0$.
>
> *Proof*. The first condition directly implies the second. Suppose that the second condition holds, and only consider two coordinates for simplicity:
> $
> \begin{align*}
> \lambda(x + y, x + y) &= \lambda(x, x + y) + \lambda(y, x + y) \\
> &= \lambda(x, x) + \lambda(x, y) + \lambda(y, x) + \lambda(y, y) \\
> &= \lambda(x, y) + \lambda(y, x) = 0
> \end{align*}
> $