> [!definition]
>
> A $k$**-[[Tensor|tensor]]** $\omega \in \mathcal{J}^k(V)$ is **alternating** if $\omega \circ \sigma = \sgn(\sigma) \cdot \omega$ for all $\sigma \in S_k$.
> [!definition]
>
> The set $\Lambda^k(V) \subset \mathcal J^k(V)$ is the collection of all alternating $k$-tensors.
> [!definition]
>
> Let $T \in \mathcal J^k(V)$, define
> $
> \text{Alt}(T) = \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma) \cdot T \circ \sigma
> $
> then
> 1. $\text{Alt}(T) \in \Lambda^k(V)$.
> 2. If $T \in \Lambda^k(V)$, then $\text{Alt}(T) = T$.
>
> *Proof*. Let $\tau \in S_k$, then the map $S_k \to S_k$ with $\sigma \to \sigma\tau$ is a bijection.
> $
> \begin{align*}
> \text{Alt}(T) \circ \tau &= \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma) \cdot T \circ \sigma \circ \tau \\
> &= \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma) \cdot T \circ \sigma\tau \\
> &= \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma\tau^{-1}) \cdot T \circ \sigma \\
> &= \sgn(\tau^{-1}) \cdot \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma) \cdot T \circ \sigma \\
> &= \sgn(\tau) \cdot \text{Alt}(T)
> \end{align*}
> $
> Suppose that $T \in \Lambda^k(V)$, then
> $
> \begin{align*}
> \text{Alt}(T) &= \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma) \cdot T \circ \sigma \\
> &= \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k} \sgn(\sigma) \cdot \sgn(\sigma) \cdot T \\
> &= \frac{1}{\abs{S_k}} \sum_{\sigma \in S_k}T = T
> \end{align*}
> $
> [!theorem]
>
> The set of all
> $
> \bigwedge_{j = 1}^{k}\phi_{i_j} \quad \bracs{i_j}_1^k \text{ strictly increasing}
> $
> is a basis for $\Lambda^k(V)$, which therefore has dimension ${n \choose k}$.
>
> *Proof*. If $T \in \Lambda^k(V) \subset \mathcal{J}^k(V)$, then
> $
> w = \sum_{i \in [n]^k}a_i \bigotimes_{j = 1}^{k}\phi_{i_j}
> $
> and
> $
> T = \text{Alt}(T) = \sum_{i \in [n]^k}a_i \text{Alt}\paren{\bigotimes_{j = 1}^{k}\phi_{i_j}}
> $
> Since each $\text{Alt}\paren{\bigotimes_{j = 1}^{k}\phi_{i_j}}$ is a constant multiple of $\bigwedge_{j = 1}^k\phi_{i_j}$, these elements span $\Lambda^k(V)$.
> [!theorem]
>
> Let $\list{v}{n}$ be a basis of $V$, $T \in \Lambda^n(V)$, and $A \in F^{n \times n}$ be a matrix. If $w_i = \sum_{j = 1}^{n}Av_j$ are $n$ vectors in $V$, then
> $
> T(w_1, \cdots, w_n) = \det A \cdot T(v_1, \cdots, v_n)
> $
> *Proof*. Let $S \in \mathcal{J}^n(F^n)$ by
> $
> S(A) = \omega(Av_1, \cdots, Av_n)
> $
> then $S$ is alternating, and is equal to $\lambda \cdot \det$ for some $\lambda$, and $\lambda = S(e_1, \cdots, e_n) = T(v_1, \cdots, v_n)$.