> [!definition]
>
> Let $V$ be a [[Vector Space|vector space]] over a [[Field|field]] $F$. A [[Multilinear Map|multilinear map]] $T: V^k \to F$ is called a $k$**-tensor** on $V$.
> [!definition]
>
> Let $V$ be a vector space, then $\mathcal{J}^k(V)$ is the space of all $k$-tensors over $V$. $\mathcal{J}^k(V)$ is also a vector space over the same field.
> [!definition]
>
> Let $V$ be a vector space, then the map
> $
> \mathcal{J}^l(V) \times \mathcal{J}^k(V) \to \mathcal{J}^{k + l}(V) \quad (S, T) \mapsto S \otimes T
> $
> where
> $
> (S \otimes T)(v, w) = S(v) \cdot T(w)
> $
> for any $v \in V^l$, $w \in V^k$, is the [[Tensor Product|tensor product]].
> [!theorem]
>
> Let $\alpha = \seqf{v_i}$ be a basis for $V$, and let $\seqf{\phi_i}$ be the [[Topological Dual|dual]] basis, then the set of all $k$-fold tensor products
> $
> \bigotimes_{j = 1}^{k}\phi_{i_j} \quad \bracs{i_j}_1^k \text{ strictly increasing}
> $
> is a basis for $\mathcal J^k(V)$, which therefore has dimension $n^k$.
>
> *Proof*. Let $x \in V^k$ and $A \in V^{n \times k}$ such that $x = A\alpha$ and $T \in \mathcal J^k(V)$, then by multilinearity
> $
> \begin{align*}
> Tx &= TA\alpha \\
> &= \sum_{j \in [n]^k} \prod_{i = 1}^{k}j_i \cdot T(v_{j_1}, \cdots, v_{j_k}) \\
> &= \sum_{j \in [n]^k} \bigotimes_{i = 1}^{k}\phi_{j_i}(x) \cdot T(v_{j_1}, \cdots, v_{j_k})
> \end{align*}
> $
> we can write any $k$-tensor as a sum of the tensor products.
>
> Suppose that there exists numbers $a_{i_1, \cdots, i_k}$ such that
> $
> \sum_{i \in [n]^k}a_i\bigotimes_{j = 1}^k\phi_{i_j} = 0
> $
> Applying both sides to $(v_{j_1}, \cdots, v_{j_k})$ yields $a_i = 0$ for all $i \in [n]^k$.