> [!definition]
>
> Let $S \in \Lambda^k(V)$ and $T \in \Lambda^l(V)$ be [[Alternating Tensor|alternating tensors]]. Define the **wedge product** $S \wedge T$ by
> $
> S \wedge T = {k + l \choose k} \cdot \text{Alt}(S \otimes T)
> $
> [!theorem]
>
> Let $S \in \Lambda^k(V)$, $T \in \Lambda^l(V)$. and $U \in \Lambda^m(V)$, then
> $
> (S \wedge T) \wedge U = S \wedge (T \wedge U) = \frac{(k + l + m)!}{k!l!m!} \cdot \text{Alt}(S \otimes T \otimes U)
> $
> *Proof*.
> $
> \begin{align*}
> (S \wedge T) \wedge U &= \frac{(k + l + m)!}{(k + l)!m!}\text{Alt}((S \wedge T) \otimes U) \\
> &= \frac{(k + l + m)!}{(k + l)!m!} \cdot \frac{(k + l)!}{k!l!}\text{Alt}(S \otimes T \otimes U)
> \end{align*}
> $