> [!theorem]
>
> Let $X, Y$ and $Z$ be $C^p$-[[Manifold|manifolds]] modelled on the [[Banach Space|Banach spaces]] $E, F$, and $G$ respectively. Let $f: X \to Y$ and $g: Y \to Z$ be $C^p$ [[Manifold Morphism|morphisms]], and $p \in X$, then the [[Differential|differential]] inherits the [[Chain Rule|chain rule]] from ordinary derivatives:
> $
> d(f \circ g)_p = dg_{f(p)} \circ df_p
> $
> *Proof*. Let $(U, \psi)$, $(V, \varphi)$, and $(W, \xi)$ be [[Atlas|charts]] containing $p$, $f(p)$, $(f \circ g)(p)$, respectively, then $f_{U, V}$ and $g_{V, W}$ are $C^p$. By the chain rule,
> $
> D\braks{(f \circ g)_{U, W}}(\hat p) = D(g_{V, W})(\widehat{f(p)}) \circ D(f_{U, V})(\hat p)
> $
> where for any $h \in T_{(U, \psi, p)}X$,
> $
> \begin{align*}
> dg_{f(p)}\circ df_p (\ol{h}) &= dg_{f(p)}\braks{\ol{D(f_{U, V})(\hat p)(h)}} \\
> &= \ol{\braks{D(g_{V, W})(\widehat{f(p)}) \circ D(f_{U, V})(\hat p)} \cdot (h)} \\
> &= \ol{\braks{D\braks{(f \circ g)_{U, W}}(\hat p)}(h)} \\
> &= d(f \circ g)_{p}(\ol{h})
> \end{align*}
> $